1,483 research outputs found
Integrasi Pembelajaran Kanji dengan Pembelajaran Sakubun untuk Meningkatkan Kemampuan Menulis
Research aims to find the influence of strategies used in intermediate kanji learning, i.e. in a more applicative class using kanji, on middle kanji and composition class (sakubun). Research viewed and compared the influence of students\u27 mark in Intermediate Kanji with their mark in Sakubun. The questionnaire used in this research was the Strategy Inventory for Language Learning (SILL) consisting of 50 questions associated with types of strategy to learn kanji. The result obtained using T-test and correlation test was the students\u27 mark in kanji affected their mark in Sakubun. The relationship is the higher mark in kanji, the higher mark in Sakubun. As a conclusion, student essay writing ability is affected by the numbers of kanji remembered and used by students
Cavity Optomechanical Magnetometer
A cavity optomechanical magnetometer is demonstrated where the magnetic field
induced expansion of a magnetostrictive material is transduced onto the
physical structure of a highly compliant optical microresonator. The resulting
motion is read out optically with ultra-high sensitivity. Detecting the
magnetostrictive deformation of Terfenol-D with a toroidal whispering gallery
mode (TWGM) resonator a peak sensitivity of 400 nT/Hz^.5 was achieved with
theoretical modelling predicting that sensitivities of up to 500 fT/Hz^.5 may
be possible. This chip-based magnetometer combines high-sensitivity and large
dynamic range with small size and room temperature operation
Modelling of vorticity, sound and their interaction in two-dimensional superfluids
Vorticity in two-dimensional superfluids is subject to intense research
efforts due to its role in quantum turbulence, dissipation and the BKT phase
transition. Interaction of sound and vortices is of broad importance in
Bose-Einstein condensates and superfluid helium [1-4]. However, both the
modelling of the vortex flow field and of its interaction with sound are
complicated hydrodynamic problems, with analytic solutions only available in
special cases. In this work, we develop methods to compute both the vortex and
sound flow fields in an arbitrary two-dimensional domain. Further, we analyse
the dispersive interaction of vortices with sound modes in a two-dimensional
superfluid and develop a model that quantifies this interaction for any vortex
distribution on any two-dimensional bounded domain, possibly non-simply
connected, exploiting analogies with fluid dynamics of an ideal gas and
electrostatics. As an example application we use this technique to propose an
experiment that should be able to unambiguously detect single circulation
quanta in a helium thin film.Comment: 23 pages, 8 figure
Molecular consequences of cystic fibrosis transmembrane regulator (CFTR) gene mutations in the exocrine pancreas
Background and aims: We tested the hypothesis that the actual or predicted consequences of mutations in the cystic fibrosis transmembrane regulator gene correlate with the pancreatic phenotype and with measures of quantitative exocrine pancreatic function. Methods: We assessed 742 patients with cystic fibrosis for whom genotype and clinical data were available. At diagnosis, 610 were pancreatic insufficient, 110 were pancreatic sufficient, and 22 pancreatic sufficient patients progressed to pancreatic insufficiency after diagnosis. Results: We identified mutations on both alleles in 633 patients (85.3%), on one allele in 95 (12.8%), and on neither allele in 14 (1.9%). Seventy six different mutations were identified. The most common mutation was ΔF508 (71.3%) followed by G551D (2.9%), G542X (2.3%), 621+1G→T (1.2%), and W1282X (1.2%). Patients were categorized into five classes according to the predicted functional consequences of each mutation. Over 95% of patients with severe class I, II, and III mutations were pancreatic insufficient or progressed to pancreatic insufficiency. In contrast, patients with mild class IV and V mutations were consistently pancreatic sufficient. In all but four cases each genotype correlated exclusively with the pancreatic phenotype. Quantitative data of acinar and ductular secretion were available in 93 patients. Patients with mutations belonging to classes I, II, and III had greatly reduced acinar and ductular function compared with those with class IV or V mutations. Conclusion: The predicted or known functional consequences of specific mutant alleles correlate with the severity of pancreatic disease in cystic fibrosis.published_or_final_versio
Curvature-coupling dependence of membrane protein diffusion coefficients
We consider the lateral diffusion of a protein interacting with the curvature
of the membrane. The interaction energy is minimized if the particle is at a
membrane position with a certain curvature that agrees with the spontaneous
curvature of the particle. We employ stochastic simulations that take into
account both the thermal fluctuations of the membrane and the diffusive
behavior of the particle. In this study we neglect the influence of the
particle on the membrane dynamics, thus the membrane dynamics agrees with that
of a freely fluctuating membrane. Overall, we find that this curvature-coupling
substantially enhances the diffusion coefficient. We compare the ratio of the
projected or measured diffusion coefficient and the free intramembrane
diffusion coefficient, which is a parameter of the simulations, with analytical
results that rely on several approximations. We find that the simulations
always lead to a somewhat smaller diffusion coefficient than our analytical
approach. A detailed study of the correlations of the forces acting on the
particle indicates that the diffusing inclusion tries to follow favorable
positions on the membrane, such that forces along the trajectory are on average
smaller than they would be for random particle positions.Comment: 16 pages, 8 figure
"Safe" Coulomb Excitation of 30Mg
We report on the first radioactive beam experiment performed at the recently
commissioned REX-ISOLDE facility at CERN in conjunction with the highly
efficient gamma spectrometer MINIBALL. Using 30Mg ions accelerated to an energy
of 2.25 MeV/u together with a thin nat-Ni target, Coulomb excitation of the
first excited 2+ states of the projectile and target nuclei well below the
Coulomb barrier was observed. From the measured relative de-excitation gamma
ray yields the B(E2; 0+ -> 2+) value of 30Mg was determined to be 241(31)
e2fm4. Our result is lower than values obtained at projectile fragmentation
facilities using the intermediate-energy Coulomb excitation method, and
confirms the theoretical conjecture that the neutron-rich magnesium isotope
30Mg lies still outside the ``island of inversion''
Nuclear data from AMS & nuclear data for AMS - some examples
We summarize some recent cross-section measurements using accelerator mass spectrometry (AMS). AMS represents an ultra-sensitive technique for measuring a limited, but steadily increasing number of longer-lived radionuclides. This method implies a two-step procedure with sample activation and subsequent AMS measurement. Applications include nuclear astrophysics, nuclear technology (nuclear fusion, nuclear fission and advanced reactor concepts and radiation dose estimations). A series of additional applications involves cosmogenic radionuclides in environmental, geological and extraterrestrial studies. Lack of information exists for a list of nuclides as pointed out by nuclear data requests. An overview of some recent measurements is given and the method is exemplified for some specific neutron-induced reactions.JRC.D.4-Standards for Nuclear Safety, Security and Safeguard
- …
