2,010 research outputs found

    Stable non-uniform black strings below the critical dimension

    Full text link
    The higher-dimensional vacuum Einstein equation admits translationally non-uniform black string solutions. It has been argued that infinitesimally non-uniform black strings should be unstable in 13 or fewer dimensions and otherwise stable. We construct numerically non-uniform black string solutions in 11, 12, 13, 14 and 15 dimensions. Their stability is investigated using local Penrose inequalities. Weakly non-uniform solutions behave as expected. However, in 12 and 13 dimensions, strongly non-uniform solutions appear to be stable and can have greater horizon area than a uniform string of the same mass. In 14 and 15 dimensions all non-uniform black strings appear to be stable.Comment: 26 pages, 11 figures. V2: reference added, matches published versio

    Frequency distributions and natural laws in Geochemistry

    Get PDF

    Non-abelian magnetic black strings versus black holes

    Full text link
    We present d+1−d+1-dimensional pure magnetic Yang-Mills (YM) black strings (or 1−1-branes) induced by the d−d-dimensional Einstein-Yang-Mills-Dilaton black holes. Born-Infeld version of the YM field makes our starting point which goes to the standard YM field through a limiting procedure. The lifting from black holes to black strings, (with less number of fields) is by adding an extra, compact coordinate. This amounts to the change of horizon topology from Sd−2S^{d-2} to a product structure. Our black string in 5−5-dimensions is a rather special one, with uniform Hawking temperature and non-asymptotically flat structure. As the YM charge becomes large the string gets thinner to tend into a breaking point and transform into a 4−4-% dimensional black hole.Comment: 5 pages no figure; Final version to appear in EPJ

    Dimensional reduction in numerical relativity: Modified cartoon formalism and regularization

    Get PDF
    We present in detail the Einstein equations in the Baumgarte–Shapiro–Shibata–Nakamura formulation for the case of D-dimensional spacetimes with SO(D−d)isometry based on a method originally introduced in Ref. 1. Regularized expressions are given for a numerical implementation of this method on a vertex centered grid including the origin of the quasi-radial coordinate that covers the extra dimensions with rotational symmetry. Axisymmetry, corresponding to the value d = D − 2, represents a special case with fewer constraints on the vanishing of tensor components and is conveniently implemented in a variation of the general method. The robustness of the scheme is demonstrated for the case of a black-hole head-on collision in D = 7 spacetime dimensions with SO(4) symmetry.U.S. is supported by the H2020 ERC Consolidator Grant “Matter and strong-field gravity: New frontiers in Einstein’s theory” grant agreement No. MaGRaTh–646597, the H2020-MSCA-RISE-2015 Grant No. StronGrHEP-690904, the STFC Consolidator Grant No. ST/L000636/1, the SDSC Comet and TACC Stampede clusters through NSF-XSEDE Award Nos. PHY-090003, the Cambridge High Performance Computing Service Supercomputer Darwin using Strategic Research Infrastructure Funding from the HEFCE and the STFC, and DiRAC’s Cosmos Shared Memory system through BIS Grant No. ST/J005673/1 and STFC Grant Nos. ST/H008586/1, ST/K00333X/1. P.F. and S.T. are supported by the H2020 ERC Starting Grant “New frontiers in numerical general relativity” grant agreement No. NewNGR- 639022. P.F. is also supported by a Royal Society University Research Fellowship. W.G.C. and M.K. are supported by STFC studentships.This is the final version of the article. It first appeared from the World Scientific Publishing Company via http://dx.doi.org/10.1142/S021827181641013

    Compositional random data: a routine for CoDaPack

    Get PDF
    Generation of random variables are needed in the simulations of many natural process. For some random variables, di erent methodologies are known, specially into euclidean spaces. In this paper a routine for dealing with random variables into a simplex space with the Aitchison geometry is presented. The routine has been implemented for the CoDaPack, a freeware software developed to be used for users with minimum programming skills

    The shifted-scaled Dirichlet distribution in the simplex

    Get PDF
    Perturbation and powering are two operations in the simplex that define a vector-space structure. Perturbation and powering in the simplex play the same role as the sum and product by scalars in real space. A standard Dirichlet random composition can be shifted by perturbation, and scaled powering by a real scalar. The obtained random composition has a shifted-scaled Dirichlet distribution. The procedure is analogous to standardization of real random variables. The derived distribution is a generalization of the Dirichlet one, and it is studied from a probabilistic point of view. In the simplex, considered as an Euclidean space, the Aitchison measure is the natural (Lebesgue type) measure, which is compatible with its operations and metrics. Therefore, a natural way of describing the generalized (shifted-scaled) Dirichlet probability distributions is using probability densities with respect to the Aitchison measure. This density representation is compared with the traditional probability density with respect to the Lebesgue measure. In particular, the center and variability for both representations are compared

    Characterisation of AMS H35 HV-CMOS monolithic active pixel sensor prototypes for HEP applications

    Full text link
    Monolithic active pixel sensors produced in High Voltage CMOS (HV-CMOS) technology are being considered for High Energy Physics applications due to the ease of production and the reduced costs. Such technology is especially appealing when large areas to be covered and material budget are concerned. This is the case of the outermost pixel layers of the future ATLAS tracking detector for the HL-LHC. For experiments at hadron colliders, radiation hardness is a key requirement which is not fulfilled by standard CMOS sensor designs that collect charge by diffusion. This issue has been addressed by depleted active pixel sensors in which electronics are embedded into a large deep implantation ensuring uniform charge collection by drift. Very first small prototypes of hybrid depleted active pixel sensors have already shown a radiation hardness compatible with the ATLAS requirements. Nevertheless, to compete with the present hybrid solutions a further reduction in costs achievable by a fully monolithic design is desirable. The H35DEMO is a large electrode full reticle demonstrator chip produced in AMS 350 nm HV-CMOS technology by the collaboration of Karlsruher Institut f\"ur Technologie (KIT), Institut de F\'isica d'Altes Energies (IFAE), University of Liverpool and University of Geneva. It includes two large monolithic pixel matrices which can be operated standalone. One of these two matrices has been characterised at beam test before and after irradiation with protons and neutrons. Results demonstrated the feasibility of producing radiation hard large area fully monolithic pixel sensors in HV-CMOS technology. H35DEMO chips with a substrate resistivity of 200Ω\Omega cm irradiated with neutrons showed a radiation hardness up to a fluence of 101510^{15}neq_{eq}cm−2^{-2} with a hit efficiency of about 99% and a noise occupancy lower than 10−610^{-6} hits in a LHC bunch crossing of 25ns at 150V

    The Gaia spectrophotometric standard stars survey -II. Instrumental effects of six ground-based observing campaigns

    Get PDF
    The Gaia SpectroPhotometric Standard Stars (SPSS) survey started in 2006, it was awarded almost 450 observing nights, and accumulated almost 100,000 raw data frames, with both photometric and spectroscopic observations. Such large observational effort requires careful, homogeneous, and automated data reduction and quality control procedures. In this paper, we quantitatively evaluate instrumental effects that might have a significant (i.e.,≄\geq1%) impact on the Gaia SPSS flux calibration. The measurements involve six different instruments, monitored over the eight years of observations dedicated to the Gaia flux standards campaigns: DOLORES@TNG in La Palma, EFOSC2@NTT and ROSS@REM in La Silla, [email protected] in Calar Alto, BFOSC@Cassini in Loiano, and [email protected] in San Pedro Martir. We examine and quantitatively evaluate the following effects: CCD linearity and shutter times, calibration frames stability, lamp flexures, second order contamination, light polarization, and fringing. We present methods to correct for the relevant effects, which can be applied to a wide range of observational projects at similar instruments.Comment: 16 pages, 13 figures, accepted for publication in Astron. Nach
    • 

    corecore