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We present in detail the Einstein equations in the Baumgarte–Shapiro–Shibata–
Nakamura formulation for the case of D-dimensional spacetimes with SO(D−d) isometry
based on a method originally introduced in Ref. 1. Regularized expressions are given for
a numerical implementation of this method on a vertex centered grid including the origin
of the quasi-radial coordinate that covers the extra dimensions with rotational symmetry.
Axisymmetry, corresponding to the value d = D−2, represents a special case with fewer
constraints on the vanishing of tensor components and is conveniently implemented in
a variation of the general method. The robustness of the scheme is demonstrated for
the case of a black-hole head-on collision in D = 7 spacetime dimensions with SO(4)
symmetry.
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1. Introduction

For most of its history, numerical relativity, i.e. the construction of solutions
to Einstein’s field equations with numerical methods, was mainly motivated by
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the modeling of compact objects as sources of gravitational waves (GWs) for
ground based [Advanced Laser Interferometer Gravitational-Wave Observatory
(aLIGO),2 Advanced Virgo3] and space-based detectors [of Laser Interferometer
Space Antenna (LISA)4 type]; see for example, Refs. 5 and 6. Numerical relativity
simulations indeed played an important role in the ground breaking observation of
GW150914,7,8 the first direct GW detection and the first observation of a black-hole
(BH) binary. Following the breakthroughs in BH simulations in 2005,9–11 however,
the field rapidly expanded into a variety of new physics frontiers.12

These applications often involve higher-dimensional spacetimes where BHs are
known from (semi-)analytic studies to exhibit a richer phenomenology as for exam-
ple through the existence of topologically nonspherical horizons or gravitational
instabilities.13 Despite considerable progress through analytic, perturbative and
numerical methods, our understanding of the properties of these higher-dimensional
BHs is still a long way from the level of maturity obtained in the four-dimensional
case. Yet, applications of numerical relativity to BHs in D > 4 have already revealed
a plethora of exciting results.

Critical spin parameters have been identified above which Myers–Perrya BHs
become unstable to bar mode perturbations in D ≥ 6 dimensions and migrate to
more slowly spinning BHs via GW emission.15 Similar numerical results for D = 5
dimensional BHs16 have not been confirmed in perturbative studies17 and may be
subject to revision in future, more accurate numerical investigations.18 The cele-
brated Gregory–Laflamme instability19 has been shown to lead to the formation
of naked singularities in finite asymptotic time in numerical simulations of black
strings in D = 5 dimensions.20,21 Most recently, a similar behavior has been iden-
tified in evolutions of thin black rings demonstrating the first violation of cosmic
censorship for a generic type of asymptotically flat initial data;22 see also Ref. 23
for a perturbative study. Applications of the gauge-gravity duality often consider
D = 5 dimensional BHs in asymptotically anti-de Sitter (AdS) spacetimes such
that the dual Conformal Field Theory (CFT) lives on the D = 4 dimensional (con-
formal) boundary of the spacetime. Applications of this AdS/CFT correspondence
include the thermalization of quark-gluon plasma, turbulence or jet quenching in
heavy-ion collisions; see Refs. 24–29 and references therein.

BH collisions provide fertile ground for numerical relativity in higher dimensions.
First, we obtain unprecedented insight into the dynamics of general relativity in its
most violent, nonlinear regime. Furthermore, the so-called TeV gravity scenarios
provide solutions to the hierarchy problem in terms of large (∼ sub millimeter)
extra dimensions30–32 or infinite extra dimensions with a warp factor33,34 which
are accessible to gravity but no other Standard-Model interactions. If correct, these
theories open up the possibility of BH formation in particle collisions or in cosmic
ray showers.35–37 These hypothetical scenarios have as yet not been confirmed in

aThese BHs are the higher-dimensional analogues of the Kerr solution.14
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experimental data taken with CERN’s Large Hadron Collider. The most recent
analysis by the Compact Muon Solenoid (CMS) collaboration excludes the forma-
tion of semiclassical BHs with masses below ∼ 8.7 TeV and that of quantum BHs
below ∼ 8 TeV.38 Similar lower bounds have been reported by the ATLAS collabo-
ration for rotating BHs in TeV gravity scenarios with two, four or six extra dimen-
sions;39 see in particular their Figs. 9 and 10. Valuable input for the data analysis
in these experiments includes the scattering cross-section and energy loss in GWs.
Numerical relativity has provided us with a rather comprehensive understanding
of these collisions in D = 4,40–48 which the community now starts extending to
higher D.49–52 For more details on these new areas in numerical relativity research
see Ref. 12.

Numerical simulations of BH spacetimes in higher dimensions are a challenging
task. First and foremost, this is simply a consequence of the required computational
resources. Simulations in D = 4 require of the order of O(102) cores and O(102) Gb
of memory. Each extra spatial dimension introduces an additional factor of O(102)
grid points and correspondingly more memory and floating point operations. Even
with modern high-performance computing systems, this sets practical limits on
the feasibility of accurately evolving higher-dimensional spacetimes. At the same
time, many of the outstanding questions can be addressed by imposing symmetry
assumptions on the spacetimes in question such as planar symmetry in modeling
asymptotically AdS spacetimes,25 cylindrical symmetry for black strings20 or dif-
ferent types of rotational symmetries.22 This can be achieved in practice by either
(i) using a specific form of the line element that directly imposes the symmetry in
question (see e.g. Ref. 25), (ii) starting with a generic line element and applying
dimensional reduction through isometry (see e.g. Refs. 53–55) or (iii) implementing
the symmetry through a so-called Cartoon method.56 Here, we are concerned with
the latter approach and, more specifically, with a modification thereof originally
introduced in Ref. 1 (see also Refs. 15, 57 and 58) which we will henceforth refer
to as the modified Cartoon method.

This article is structured as follows. In Sec. 2, we introduce the notation used
throughout our work, and illustrate the modified Cartoon implementation of the
symmetries for a specific example. In Sec. 3, we introduce the Baumgarte–Shapiro–
Shibata–Nakamura59,60 (BSSN) evolution system which we use for the Einstein
equations, and derive their specific form in SO(D − d) symmetry when rotational
symmetry is present in ≥ 2 planes which corresponds to d < D − 2. The axisym-
metric case d = D− 2 imposes less restrictive conditions on the vanishing of tensor
density components and their derivatives, and the particulars of its numerical imple-
mentation are discussed in Sec. 4. As an example, we present in Sec. 5 numerical
simulations of a BH head-on collision in D = 7 dimensions employing SO(4) sym-
metry. We summarize our findings in Sec. 6 and include in three appendices a list
of important relations for the components of tensors and derived quantities as well
as the regularization necessary at the origin in the quasi-radial direction.
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2. SO(D − d) Symmetry in the Modified Cartoon Method

2.1. Coordinates

It is instructive to illustrate the method by considering first a simpler scenario:
axisymmetry in three spatial dimensions. Let (x, z, w) denote Cartesian coordinates
and assume rotational symmetry about the x axisb i.e. there exists a rotational
Killing field in the z, w plane. Evidently, the geometry of such a three-dimensional
manifold can be constructed straightforwardly provided all tensors (e.g. the metric)
are known on the semi infinite plane w = 0, z ≥ 0, x ∈ R. We note the simplification
in the computational task: the w coordinate has dropped out and the quasi-radius
z takes on only nonnegative values, reducing an originally three-dimensional com-
putational domain to a calculation on half of R

2. This is the case considered in the
original papers.1,56

The most common applications will likely consider higher-dimensional space-
times with SO(D − 3) symmetry, but here we present the general application to a
D-dimensional spacetime with SO(D − d) symmetry, where d ∈ N, 1 ≤ d ≤ D − 2.
Let us then consider a D-dimensional spacetime consisting of a manifold M and a
metric gAB of signature D−2 where A,B, . . . = 0, . . . , D−1. The metric satisfies the
D-dimensional Einstein equations which, in units where the speed of light c = 1,
are given by

GAB = RAB − 1
2
RgAB = 8πGTAB − ΛgAB. (1)

Here, RAB and R denote the Ricci tensor and scalar associated with the spacetime
metric gAB, Λ is the cosmological constant and TAB is the energy–momentum tensor.
Throughout our work, we use the conventions of Misner, Thorne and Wheeler61 for
the metric signature, Christoffel symbols and the Riemann tensor. Henceforth, we
shall also set the gravitational constant G = 1.

We now assume the spacetime to obey SO(D − d) symmetry and introduce
Cartesian coordinates by

XA = (t, x1, x2, . . . , xd−1︸ ︷︷ ︸
(d−1)×

, z, wd+1, wd+2, . . . , wD−1︸ ︷︷ ︸
(D−d−1)×

) =: (t, xî, z, wa), (2)

where î = 1, . . . , d−1, a = d+1, . . . , D−1. SO(D−d) symmetry implies the existence
of rotational Killing vectors in each plane spanned by two of the coordinates (z, wa).
In complete analogy with the axisymmetric scenario discussed above, it is now
sufficient to provide data on the d-dimensional semi-infinite hyperplane wa = 0, xî ∈
R, z ≥ 0. The components of a tensor at any point in the spacetime can then
be obtained by appropriately rotating data from the hyperplane onto the point
in question. This is illustrated in Fig. 1 where we show an example application
consisting of a collision of two BHs. Note that the BHs can have nonzero spin

bIt is more common to label the coordinates (x, y, z) and use symmetry about the z axis, but our
choice of labels emphasizes more clearly the analogy to the higher-dimensional case.
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S1 S2
xî

z

wa

Fig. 1. Graphical illustration of a BH collision inside a plane spanned by the xî directions. The
BHs may rotate with a spin direction inside that plane. Note that in general, there are multiple
coordinates xî and the collisions need not be head-on but may instead be of grazing nature inside
the subspace (xî). The dashed line illustrates the rotational symmetry in any of the (z, wa) planes.
Additional rotational symmetries in the (wa, wb) planes can be present but cannot be illustrated
in the figure. A single black ring could be represented in this figure by one grey shaded horizon
cross section offset from z = 0. Note that the computational domain is given by the hyperplane
wa = 0, z ≥ 0, xî ∈ R and that each point in this hyperplane represents a D − d − 1 sphere of
radius z.

components in the xî directions and that the collision may be of grazing nature in
the corresponding subspace.

In modeling spacetimes with such symmetries, it is therefore entirely sufficient
to compute data on the hyper plane. This largely solves the problem of increased
computational cost mentioned in the introduction. There remains, however, the
difficulty that the Einstein equations, irrespective of the specific formulation one
chooses, contain derivatives of tensor components in the wa directions which cannot
be evaluated numerically in the usual fashion, as for example using finite differences
or spectral methods. Furthermore, the number of tensor components present in the
Einstein equations still increases rapidly with the dimension parameter D resulting
in a substantial increase of memory requirements and floating point operations.
Both of these difficulties are overcome by exploiting the conditions imposed on the
tensor components and their derivatives by the SO(D − d) symmetry. It is these
conditions which we address next. It turns out to be convenient in this discussion
to distinguish between (1) the case d = D − 2 corresponding to SO(2) isometry,
and (2) all remaining cases d < D − 2. We defer discussion of the special case
d = D − 2 to Sec. 4 where we present a numerical treatment specifically designed
for conveniently dealing with it. The description of this treatment will be simpler

1641013-5
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after first handling the class of symmetries with d < D− 2 which we discuss in the
remainder of this and in the next section.

2.2. Tensor components in SO(D − d) symmetry for d < D − 2

The key ingredient we use in reducing the number of independent tensor compo-
nents and relating their derivatives are the rotational Killing vectors and the use of
coordinates adapted to the integral curves of these Killing vectors. The method is
best introduced by considering a concrete example. Let ξ denote the Killing vector
field corresponding to the rotational symmetry in the (z, w) plane, where w ≡ wa

for some fixed number a ∈ {d+ 1, . . . , D− 1}. We introduce a new coordinate sys-
tem that replaces (z, w) with cylindrical coordinates and leaves all other coordinates
unchanged,

X̄A = (t, xî, ρ, wd+1, . . . , wa−1, ϕ, wa+1, . . . , wD−1),

ρ =
√
z2 + w2, z = ρ cosϕ, ϕ = arctan

w

z
, w = ρ sinϕ.

(3)

In these coordinates, the Killing field is ξ = ∂ϕ and the vanishing of the Lie
derivative LξgAB = 0 implies ∂ϕgAB = 0. Note that quantities constructed from
the spacetime metric directly inherit this property. This applies, in particular, to
the Arnowitt–Deser–Misner62 (ADM) — see also Refs. 63 and 64 — and the BSSN
variables widely used in numerical relativity. For d < D − 2, one can furthermore
show that the ϕ component of a vector field and those components of a tensor field
TAB, where exactly one index is ϕ, vanish.c

The concrete example we now discuss in more detail concerns a symmetric tensor
density TAB of weight W and, in particular, the mixed components Tiw, where the
index i stands for any one of the (xî, z) coordinates and w stands for one of the
wa. We first consider the components Tîw for some fixed value of î. Transforming
the component T̄îϕ to Cartesian coordinates, one gets

T̄îϕ = DW ∂XA

∂X̄ î

∂XB

∂ϕ
TAB = DW (−wTîz + zTîw), (4)

where D is the Jacobian det(∂XA/∂X̄B) = ρ. Using that T̄îϕ = 0 by symmetry, this
equation implies

Tîw =
w

z
Tîz. (5)

Similarly, transforming T̄ρϕ to Cartesian coordinates and using that T̄ρϕ = 0 by
symmetry, one straightforwardly gets

Tzw =
zw

z2 − w2
(Tzz − Tww). (6)

cHere, the case d = D − 2 represents an exception, an axisymmetric, toroidal magnetic field, for
example, satisfies SO(2) symmetry, but has a nonvanishing ϕ component.
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Recalling that the computational domain is the hyperplane wa = 0, xî ∈ R, z ≥ 0,
we conclude from Eqs. (5) and (6) that on the computational domain Tiw = 0. This
argument holds for any specific choice of the coordinate w, so that we conclude

Tia = 0. (7)

To compute the derivatives with respect to w on the w = 0 hyperplane, one can
proceed as follows. For the tensor components in the example above, one can simply
use (5) and (6) to calculate ∂wTia and then set w = 0. Alternatively, writing the
Killing field ξ as

ξ = z∂w − w∂z , (8)

and imposing the vanishing of the Lie derivative LξTia = 0 on the w = 0 hyperplane,
one gets

∂wTiw =
Tiz − δizTww

z
. (9)

Repeating this process for all components of scalar, vector and rank 2 tensor den-
sities as well as their first and second derivatives, we get the relations summarized
in Appendix A.

We have shown the calculation here explicitly for the case of tensor densities.
It can be shown that the vectorial expressions thus obtained also apply to the
contracted Christoffel symbol ΓA ≡ gMNΓA

MN constructed from the metric, even
though it is not a vector density.

3. Dimensional Reduction of the BSSN Equations

In this section, we will apply the symmetry relations obtained above to the specific
case of the BSSN formulation of the Einstein equations in D spacetime dimensions.
We emphasize, however, that the procedure spelled out here for the BSSN system
can be applied in similar form to any of the alternative popular formulations used
in numerical relativity.

3.1. The D-dimensional BSSN equations

The starting point for the BSSN formulation is a spacetime, or (D − 1) + 1, split
where the spacetime is foliated in terms of a one-parameter family of D− 1 dimen-
sional, spatial hypersurfaces. In coordinates adapted to this split, the line element
takes on the form

ds2 = gABdx
AdxB = (−α2 + βIβ

I)dt2 + 2βIdx
Idt+ γIJdx

IdxJ , (10)

where I, J, . . . = 1, . . . , D − 1 and α and βI denote the lapse function and shift
vector, respectively. The ADM equations in the form developed by York63 then
result in one Hamiltonian constraint, D−1 momentum constraints and D(D−1)/2
second-order evolution equations for the spatial metric components γIJ . The latter

1641013-7
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are formulated as a first-order-in-time system by introducing the extrinsic curvature
KIJ through

∂tγIJ = βM∂MγIJ + γMJ∂Iβ
M + γIM∂Jβ

M − 2αKIJ . (11)

Spacetime decompositions of the Einstein equations typically split the energy–
momentum tensor analogously into time, space and mixed components according
to

ρ ≡ TABn
AnB, jA ≡ −(δB

A + nBnA)TBCn
C,

SAB ≡ (δC
A + nCnA)(δD

B + nDnB)TCD,
(12)

where nA denotes the future pointing, timelike unit normal field on the spatial
hypersurfaces. The variables ρ, jA and SAB defined in this way represent the energy
density, momentum density and spatial stress tensor as measured by an Eulerian
observer, i.e. an observer moving with velocity nA. The complete set of the ADM
equations, thus obtained, can be found as Eqs. (52)–(55) in Ref. 12.

The BSSN system is obtained from the ADM equations by applying a conformal
transformation to the spatial metric, a trace split of the extrinsic curvature and
promotion of the contracted spatial Christoffel symbols to the status of evolution
variables. The BSSN variables are defined as

χ = γ−1/(D−1), K = γMNKMN ,

γ̃IJ = χγIJ ⇔ γ̃IJ =
1
χ
γIJ ,

ÃIJ = χ

(
KIJ − 1

D − 1
γIJK

)
⇔ KIJ =

1
χ

(
ÃIJ +

1
D − 1

γ̃IJK

)
,

Γ̃I = γ̃MN Γ̃I

MN
, (13)

where γ = det γIJ , and Γ̃I
MN

are the Christoffel symbols associated with the con-
formal metric γ̃IJ . We formulate here the conformal factor in terms of the variable
χ, following Ref. 11. Alternative versions of the equations using variables W ≡ √

χ

or φ ≡ −(lnχ)/4 can be found in Refs. 65 and 66. Note that the definition of
the BSSN variables in (13) implies two algebraic and one differential constraints
given by

γ̃ = 1, γ̃MNÃMN = 0, GI ≡ Γ̃I − γ̃MN Γ̃I

MN = 0 . (14)

The D-dimensional BSSN equations are then given by the Hamiltonian and momen-
tum constraints

H ≡ R +
D − 2
D − 1

K2 − ÃMNÃMN − 16πρ− 2Λ = 0, (15)

MI ≡ γ̃MND̃MÃNI − D − 2
D − 1

∂IK − D − 1
2

ÃM
I

∂Mχ

χ
− 8πjI

= 0, (16)

1641013-8

In
t. 

J.
 M

od
. P

hy
s.

 D
 D

ow
nl

oa
de

d 
fr

om
 w

w
w

.w
or

ld
sc

ie
nt

if
ic

.c
om

by
 C

A
M

B
R

ID
G

E
 U

N
IV

E
R

SI
T

Y
 o

n 
08

/0
1/

16
. F

or
 p

er
so

na
l u

se
 o

nl
y.



2nd Reading

May 30, 2016 15:2 WSPC/S0218-2718 142-IJMPD 1641013

The modified Cartoon method in numerical relativity

and the evolution system

∂tχ = βM∂Mχ+
2

D − 1
χ(αK − ∂Mβ

M), (17)

∂tγ̃IJ = βM∂M γ̃IJ + 2γ̃M(I∂J)β
M − 2

D − 1
γ̃IJ∂Mβ

M − 2αÃIJ , (18)

∂tK = βM∂MK − χγ̃MNDMDNα+ αÃMNÃMN +
1

D − 1
αK2

+
8π

D − 2
α[S + (D − 3)ρ] − 2

D − 2
αΛ, (19)

∂tÃIJ = βM∂MÃIJ + 2ÃM(I∂J)β
M − 2

D − 1
ÃIJ∂Mβ

M + αKÃIJ

− 2αÃIMÃ
M

J + χ(αRIJ −DIDJα− 8παSIJ)TF, (20)

∂tΓ̃I = βM∂M Γ̃I +
2

D − 1
Γ̃I∂Mβ

M − Γ̃M∂Mβ
I + γ̃MN∂M∂Nβ

I

+
D − 3
D − 1

γ̃IM∂M∂Nβ
N − ÃIM

[
(D − 1)α

∂Mχ

χ
+ 2∂Mα

]

+ 2αΓ̃I

MNÃ
MN − 2

D − 2
D − 1

αγ̃IM∂MK − 16π
α

χ
jI − σGI∂Mβ

M . (21)

Here, RIJ , R are the Ricci tensor and scalar associated with the physical spatial
metric γIJ , Λ is the cosmological constant, the superscript “TF” denotes the trace-
free part and we have added a constraint damping term σGI in the last line, following
the suggestion by Ref. 67. The above equations are complemented by the following
auxiliary relations,

ΓI

JK = Γ̃I

JK − 1
2χ

(δI
K∂Jχ+ δI

J∂Kχ− γ̃JK γ̃
IM∂Mχ), (22)

RIJ = R̃IJ + Rχ
IJ
, (23)

Rχ
IJ

=
γ̃IJ

2χ

[
γ̃MND̃MD̃Nχ− D − 1

2χ
γ̃MN∂Mχ∂Nχ

]

+
D − 3

2χ

(
D̃ID̃Jχ− 1

2χ
∂Iχ∂Jχ

)
, (24)

R̃IJ = −1
2
γ̃MN∂M∂N γ̃IJ + γ̃M(I∂J)Γ̃M + Γ̃M Γ̃(IJ)M

+ γ̃MN [2Γ̃K

M(I
Γ̃J)KN + Γ̃K

IM
Γ̃KJN ], (25)

DIDJα = D̃ID̃Jα+
1
χ
∂(Iχ∂J)α− 1

2χ
γ̃IJ γ̃

MN∂Mχ∂Nα. (26)

The BSSN equations in this form are general and facilitate the numerical construc-
tion of D-dimensional spacetimes. Next, we will describe in detail how the equations
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can be reduced to an effective system in d spatial dimensions for spacetimes obeying
rotational symmetry with d < D − 2.

3.2. The BSSN equations with SO(D − d) symmetry for d < D − 2

We now apply the relations summarized in Appendix A to the definition of the
BSSN variables (13) and the D-dimensional BSSN equations (15)–(21). Recalling
that early and middle Latin indices run over a, b, . . . = d+1, . . . , D−1 and i, j, . . . =
1, . . . , d, respectively, and introducing η ≡ D−d−1, the variables are given in terms
of their ADM counterparts by

χ = γ−1/(D−1), K = γMNKMN

γ = det γIJ = γη
ww det γij , = γmnKmn + ηγwwKww,

γ̃ij = χγij , γ̃ww = χγww ⇔ γ̃ij =
1
χ
γij , γ̃ww =

1
χ
γww,

Ãij = χ

(
Kij − 1

D − 1
γijK

)
⇔Kij =

1
χ

(
Ãij +

1
D − 1

γ̃ijK

)
,

Ãww = χ

(
Kww − 1

D − 1
γwwK

)
⇔Kww =

1
χ

(
Ãww +

1
D − 1

γ̃wwK

)
,

Γ̃i = γ̃MN Γ̃i
MN

= γ̃mnΓ̃i
mn + ηγ̃wwΓ̃i

ww,

(27)

where

Γ̃i
ww = −1

2
γ̃im∂mγ̃ww +

δi
z − γ̃ziγ̃ww

z
. (28)

We first note that the spatial metric with SO(D − d) symmetry has the form

γ̃IJ =




γ̃x1x1 · · · γ̃x1xd−1 γ̃xz 0 0 · · · 0
...

. . .
...

...
...

... · · · ...

γ̃xd−1x1 · · · γ̃xd−1xd−1 γ̃xd−1z 0 0 · · · 0

γ̃zx1 · · · γ̃zxd−1 γ̃zz 0 0 · · · 0

0 · · · 0 0 γ̃ww 0 . . . 0

0 · · · 0 0 0 γ̃ww . . . 0
... · · · ...

...
...

...
. . .

...

0 · · · 0 0 0 0 · · · γ̃ww




, (29)

which simplifies the calculation of the inverse metric γ̃AB; see Appendix B.
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The constraint equations (15), (16) become

H = χγ̃mnRmn − ÃmnÃmn +
D − 2
D − 1

K2 + η

(
χγ̃wwRww − Ã2

ww

γ̃2
ww

)

− 16πρ− 2Λ = 0, (30)

Mi = γ̃mn∂mÃni − Γ̃mÃmi − γ̃mlΓ̃n
imÃnl − D − 2

D − 1
∂iK − D − 1

2χ
Ãm

i∂mχ

+ ηγ̃ww

(
Ãiz − δizÃww

z
− Γ̃m

wwÃmi − 1
2
γ̃wwÃww∂iγ̃ww

)
− 8πji = 0. (31)

and the BSSN evolution equations (17)–(21) are now written as

∂tχ = βm∂mχ+
2

D − 1
χ

(
αK − ∂mβ

m − η
βz

z

)
, (32)

∂tγ̃ij = βm∂mγ̃ij + 2γ̃m(i∂j)β
m − 2

D − 1
γ̃ij

(
∂mβ

m + η
βz

z

)
− 2αÃij , (33)

∂tγ̃ww = βm∂mγ̃ww − 2
D − 1

γ̃ww

(
∂mβ

m − d
βz

z

)
− 2αÃww, (34)

∂tK = βm∂mK − χγ̃mnDmDnα+ αÃmnÃmn +
1

D − 1
αK2

+ ηγ̃ww

(
α
Ã2

ww

γ̃ww
− χDwDwα

)
+

2
D − 2

α{4π[S + (D − 3)ρ] − Λ}, (35)

∂tÃij = βm∂mÃij + 2Ãm(i∂j)β
m − 2

D − 1
Ãij

(
∂mβ

m + η
βz

z

)
+ αKÃij

− 2αγ̃mnÃimÃjn + χ[α(Rij − 8πSij) −DiDjα]TF, (36)

∂tÃww = βm∂mÃww − 2
D − 1

Ãww

(
∂mβ

m − d
βz

z

)
+ αÃww(K − 2γ̃wwÃww)

+χ[α(Rww − 8πSww) −DwDwα]TF, (37)

∂tΓ̃i = βm∂mΓ̃i +
2

D − 1
Γ̃i

(
∂mβ

m + η
βz

z

)
+ γ̃mn∂m∂nβ

i +
D − 3
D − 1

γ̃im∂m∂nβ
n

− Γ̃m∂mβ
i + ηγ̃ww

(
∂zβ

i

z
− δi

z
βz

z2

)
+
D − 3
D − 1

η

(
γ̃im ∂mβ

z

z
− γ̃iz β

z

z2

)

− Ãim

[
(D − 1)α

∂mχ

χ
+ 2∂mα

]
+ 2α(Γ̃i

mnÃ
mn + ηΓ̃i

wwÃ
ww) − 16π

α

χ
ji

− 2
D− 2
D− 1

αγ̃im∂mK − σ

[(
∂mβ

m + η
βz

z

)
(Γ̃i − γ̃mnΓ̃i

mn − ηγ̃wwΓ̃i
ww)

]
.

(38)
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These equations contain a number of auxiliary expressions which are given in terms
of the fundamental BSSN variables by Eq. (28) as well as

DiDjα = ∂i∂jα− Γ̃m
ji∂mα+

1
2χ

(∂iχ∂jα+ ∂jχ∂iα) − γ̃ij

2χ
γ̃mn∂mχ∂nα, (39)

[DiDjα]TF = DiDjα− 1
D − 1

γ̃ij(γ̃mnDmDnα+ ηγ̃wwDwDwα), (40)

DwDwα =
(

1
2
γ̃mn∂nγ̃ww +

γ̃zm

z
γ̃ww

)
∂mα− 1

2χ
γ̃wwγ̃

mn∂mχ ∂nα, (41)

[DwDwα]TF =
1

D − 1
(d×DwDwα− γ̃wwγ̃

mnDmDnα), (42)

Rij = Rχ
ij + R̃ij , (43)

Rww = Rχ
ww + R̃ww, (44)

Rχ
ij =

1
2χ
γ̃ij

[
γ̃mnD̃mD̃nχ+ η

(
1
2
γ̃wwγ̃mn∂nγ̃ww +

γ̃mz

z

)
∂mχ

− D − 1
2χ

γ̃mn∂mχ ∂nχ

]
+
D − 3

2χ

(
D̃iD̃jχ− 1

2χ
∂iχ ∂jχ

)
, (45)

Rχ
ww =

γ̃ww

2χ

[
γ̃mnD̃mD̃nχ+ (2D − d− 4)

(
1
2
γ̃wwγ̃mn∂nγ̃ww +

γ̃mz

z

)
∂mχ

− D − 1
2χ

γ̃mn∂mχ ∂nχ

]
, (46)

R̃ij = ηγ̃ww

[
−1

2
∂zγ̃ij

z
+
δz(iγ̃j)z − δizδjz γ̃ww

z2
+
γ̃wwγ̃z(j − δz(j

z
∂i)γ̃ww

− 1
4
γ̃ww∂iγ̃ww ∂j γ̃ww

]
− 1

2
γ̃mn∂m∂nγ̃ij + γ̃m(i∂j)Γ̃m

+ Γ̃mΓ̃(ij)m + γ̃mn[2Γ̃k
m(iΓ̃j)kn + Γ̃k

imΓ̃kjn], (47)

R̃ww = −1
2
γ̃mn∂m∂nγ̃ww +

1
2
γ̃wwγ̃mn∂mγ̃ww ∂nγ̃ww − η

2
γ̃ww ∂zγ̃ww

z

+ γ̃ww
Γ̃z

z
+

1
2

Γ̃m∂mγ̃ww +
γ̃zzγ̃ww − 1

z2
, (48)

[Rij ]TF = Rij − 1
D − 1

γ̃ij γ̃
mnRmn − η

D − 1
γ̃ij γ̃

wwRww, (49)

[Rww]TF =
1

D − 1
(d×Rww − γ̃wwγ̃

mnRmn). (50)

The BSSN equations in this form can readily be implemented in an existing “d+1”
BSSN code with the addition of merely two new field variables, γ̃ww and Ãww. While
the BSSN equations acquire additional terms, the computational domain remains
d-dimensional. Furthermore, the entire set of Eqs. (30)–(50) contains exclusively
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derivatives in the xi directions and in time, which can be evaluated without need
of ghost zones in the extra dimensions.

There only remains one further subtlety arising from the explicit division by
z in several of the terms present. Some (though not all) numerical codes require
evaluation of these expressions at z = 0 which makes regularization of these terms
mandatory. As we show explicitly in Appendix B, this can be achieved for all terms,
yielding expressions that are exact in the limit z → 0. The results we discuss in
Sec. 5 make use of these regularized terms on the plane z = 0 demonstrating that
this procedure provides stable and accurate evolutions.

We conclude this section with a brief remark of the matter terms present in
(30)–(50) in the form of the projections ρ, ji, Sij and S = χ(γ̃ijSij + ηγ̃wwSww)
of the energy–momentum tensor. The specific form of these terms will depend on
the physical system under consideration and will need to be evaluated separately
for each case as will the precise form of the matter evolution equations resulting
from the conservation law ∇AT

AB = 0. Many applications of higher-dimensional
numerical relativity concern BHs and the example application discussed in Sec. 5
will be an asymptotically flat vacuum spacetime where the matter terms and the
cosmological constant are zero.

4. The Special Case of SO(2) Symmetry

We now return to the special situation where d = D−2 which corresponds to SO(2)
isometry, i.e. axisymmetric spacetimes.1 This case is special in that ϕ components
of a vector field or those components of a tensor field TAB where exactly one index
is ϕ, do not necessarily vanish. The reason for this exceptional property of SO(2)
symmetry is that with only one Killing vector ∂ϕ, the vector f(xi) ∂ϕ, for an
arbitrary function f , trivially satisfies the symmetry as it commutes with all Killing
vectors. Thus, SO(2) symmetry does not, in general, cause any tensor components
to vanish, and only a negligible amount of computational cost and memory would be
saved by explicitly inserting the modified Cartoon terms, as derived in the previous
two sections, into the BSSN equations. We are still able, however, to capitalize on
the substantial reduction in memory and floating point operations that arises from
the dimensional reduction of the computational domain. This is most conveniently
achieved by retaining the BSSN equations in their full D-dimensional form and only
using the modified Cartoon method to fill in derivatives that cannot be calculated
directly on the computational grid.

Let us illustrate this process for D = 5 with SO(2) isometry. Due to the symme-
try, we can model such a spacetime on a three-dimensional grid on which we store
all vector and tensor components, including those of the type V w and TIw, which
do not vanish for SO(2) symmetry. In order to evolve the system by one time step,
we need to compute derivatives with respect to all coordinates. Derivatives with
respect to xi can be calculated on the grid using standard methods. Derivatives
with respect to w, on the other hand, can be calculated on our three-dimensional
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grid using the modified Cartoon method. For example, for a vector, the procedure
is

V I
,J =




0
calculate on 0

the grid −V w/z

V z/z


. (51)

Appendix C lists all necessary expressions for derivatives with SO(2) symmetry.
Once all derivatives have been calculated, we have all the information required to
use the standard D = 5 BSSN equations (15)–(21) without the need for any extra
terms.

Note that this method for handling SO(2) symmetry can straightforwardly be
combined with the method described in Secs. 2 and 3. Such a procedure can handle,
for example, the symmetry of black rings and has been applied in Ref. 22 to speed
up the exploration of the gauge parameter space in numerical evolutions of black
rings in D = 5. Black rings have horizons of topology68 S1 × S2 and rotate along
the S1. This rotational symmetry requires handling with the special method for
d = D− 2 because ϕ components do not vanish in that case. The second symmetry
corresponding to the S2, however, is amenable to the treatment presented in Secs. 2
and 3. In practice, Refs. 22 and 69 first applied the latter reduction and then the
special SO(2) reduction sketched in Eq. (51).

5. Application to a BH Collision

In this section we present, as a specific example for the efficacy of the formalism,
results from the numerical simulation of a head-on collision of two nonspinning
BHs in D = 7 dimensions starting from rest. A nonrotating BH in D spacetime
dimensions is described by the Tangherlini70 solution

ds2 = −
(

1 − µ

RD−3

)
dt2 +

(
1 − µ

RD−3

)−1

dR2 +R2dΩ2
D−2, (52)

where dΩD−2 denotes the area element of the (D − 2) sphere and the parameter µ
is related to the BH mass M and the horizon radius Rh by

µ =
16πM

(D − 2)ΩD−2
, µ = RD−3

h . (53)

Here, ΩD−2 is the surface area of the unit (D− 2) sphere. The Tangherlini solution
can be written in isotropic coordinates in the form

ds2 = −
(

4rD−3 − µ

4rD−3 + µ

)
dt2 +

(
1 +

µ

4rD−3

)4/(D−3)
[∑

i

(dxi)2 +
∑

a

(dwa)2
]
,

(54)

which facilitates construction of analytic data for a snapshot of a spacetime con-
taining multiple BHs at the moment of time symmetry according to the procedure
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of Brill and Lindquist.71 These higher-dimensional Brill–Lindquist data are given
in terms of the ADM variables by

KIJ = 0, γIJ = ψ4/(D−3)δIJ , ψ = 1 +
∑
A

µA

4

[
D−1∑
K=1

(XK −XK

A)2
](D−3)/2

,

(55)

where the summation over A and K extend over the multiple BHs and spatial
coordinates, respectively, and XK

A denotes the position of the Ath BH.
We have implemented these initial data in the Lean code,72,73 which is based on

Cactus74,75 and uses Carpet76,77 for mesh refinement. The specific case presented
here has been obtained using SO(4) symmetry, i.e. D = 7, d = 3, for a collision along
the x axis of two equal-mass BHs initially separated by 7.58 Rh, where Rh is the
horizon radius associated with a single BH with µ = µ1 = µ2. The computational
domain consists of a set of seven refinement levels, the innermost two centered
on the BHs and the five outer ones on the origin. We employ standard moving
puncture gauge conditions10,11,66,78 [note that we use here βa = 0 in accordance
with Eq. (A.3)]

∂tα = βm∂mα− 3αK, (56)

∂tβ
i = βm∂mβ

i +
3
4

Γ̃i − 1
21/4Rh

βi, (57)

having initialized lapse and shift to their Minkowski values α = 1, βi = 0. Two
simulations have been performed in octant symmetry with a grid spacing ∆x =
Rh/52 and ∆x = Rh/104, respectively, on the innermost level, that increases by a
factor of two on each consecutive level further out.

Figure 2 shows the trajectories of the two BHs evolving in time from the initial
separation through merger into a single hole centered on the origin, obtained from
the high resolution simulation with ∆x = Rh/104. In order to check the consis-
tency of our numerical formalism, we have also analyzed the constraint equations
for this configuration. A snapshot of the Hamiltonian constraint (15) along the
collision axis at evolution time t = 80 Rh is shown in Fig. 3. In this figure, the
result obtained for the high resolution run has been amplified by a factor of four
expected for second-order convergence. The overlap of the two curves demonstrates
convergence at second order, compatible with the numerical scheme that employs
second and fourth-order accurate discretization and interpolation techniques. We
have performed the same analysis for the Hamiltonian and momentum constraints
at several points in time and observe the same second-order convergence of both
constraints throughout infall and merger. Note that only one BH is present on
the computational domain (at about x = 2.5 in the figure) because of the octant
symmetry. The other BH is represented in this simulation through the symmetric
boundary conditions imposed at x = 0.
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Fig. 2. BH trajectories for an equal-mass head-on collision of two nonspinning holes initially at
rest in D = 7 dimensions. The collision takes place along the x axis.

0.1 1 10 100
x / Rh

10
-12

10
-10

10
-8

10
-6

10
-4

10
-2

10
0

Rh
2 |H|

∆x = 1 / (54 Rh)
∆x = 1 / (108 Rh)

Fig. 3. (Color online) The Hamiltonian constraint along the collision axis obtained for a BH head-
on collision starting from rest using resolution parameters ∆x = Rh/52 (solid, black curve) and
∆x = Rh/104 (dashed, red curve). The latter has been amplified by a factor of four corresponding
to second-order convergence.

6. Conclusions

In the presence of rotational symmetry, the Einstein equations simplify considerably
and the generation of numerical solutions to these equations can be implemented
with significant improvements in computational cost and the required amount of
computer memory. The Cartoon method proposed in Ref. 56 was the first technique
designed with the particular goal of efficiently modeling axisymmetric spacetimes
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in 3+1 numerical relativity. A modification, often dubbed the modified Cartoon
method1 used relations between tensor components in place of spatial interpolation
operations, which not only eliminates the need of introducing a few extra grid points
in the symmetry directions, but also allows for a particularly convenient general-
ization to an arbitrary number of spacetime dimensions and number of rotational
symmetries.15,57,58

In this work, we have presented in detail the complete set of equations as
obtained for the BSSN formulation of the Einstein equations in D spacetime dimen-
sions with SO(D−d) isometry where d ∈ {1, 2, . . . , D−2}. Furthermore, we explic-
itly demonstrate the presence of extra terms for the case d = D − 2, where the
symmetry condition allows for a wider class of components of tensor densities to
remain nonzero. Finally, we have compiled a list of terms involving division by the
quasi-radial coordinate (the z direction in our case) and illustrate how all irregular-
ities at the origin z = 0 can be cured through equivalence with manifestly regular
expressions. Even though we used the BSSN formulation for our discussion, the
recipes detailed here can be applied straightforwardly to other popular formula-
tions of the Einstein equations such as the generalized harmonic gauge1,79 or the
conformal Z480,81 systems.

As an example, we have presented results from a head-on collision from rest
of two equal-mass, nonspinning BHs in D = 7 spacetime dimensions. Following a
rather slow acceleration phase, due to the rapid diminishing of the gravitational
force with distance, the two BHs merge and we observe second-order convergence
of the constraints. This confirms in yet another type of application the remarkable
robustness observed for the modified Cartoon method in applications to spinning
BHs15 or high-energy collisions in D = 5.51 This seemingly superior robustness as
compared with the method of reduction by isometry developed in Ref. 54 is, at
present, empirical but merits further investigation at the analytic level.
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Appendix A. Cartesian Components in SO(D − d) Symmetry

We present here the list of all modified Cartoon expressions for the case of SO(D−d)
symmetry with d < D− 2. The index range for early Latin indices is a, b, . . . = d+
1, . . . , D− 1 and for middle Latin indices i, j, . . . = 1, . . . , d. Furthermore, an index
z denotes the coordinate z while the index w only appears in the tensor component
Tww which represents the additional function that needs to be evolved numerically
in addition to the Tij . For example, the spacetime metric is fully described by the
components gαβ , α, β = 0, 1, . . . , d, plus one additional field gww. For arbitrary
scalar, vector and tensor densities Ψ, V A and TAB, the expressions are

0 = ∂aΨ = ∂i∂aΨ, (A.1)

∂a∂bΨ = δab
∂zΨ
z
, (A.2)

0 = V a = ∂iV
a = ∂aV

i = ∂a∂bV
c, (A.3)

∂aV
b = δa

bV
z

z
, (A.4)

∂i∂aV
b = δb

a

(
∂iV

z

z
− δiz

V z

z2

)
, (A.5)

∂a∂bV
i = δab

(
∂zV

i

z
− δi

z
V z

z2

)
, (A.6)

0 = Tia = ∂aTbc = ∂i∂aTbc = ∂a∂bTic = ∂aTij = ∂i∂aTjk , (A.7)

Tab = δabTww, (A.8)

∂a∂bTcd = (δacδbd + δadδbc)
Tzz − Tww

z2
+ δabδcd

∂zTww

z
, (A.9)

∂aTib = δab
Tiz − δizTww

z
, (A.10)

∂i∂aTjb = δab

(
∂iTjz − δjz∂iTww

z
− δiz

Tjz − δjzTww

z2

)
, (A.11)

∂a∂bTij = δab

(
∂zTij

z
− δizTjz + δjzTiz − 2δizδjzTww

z2

)
. (A.12)

Appendix B. Regularization at z = 0 for d < D − 2

The presence of z in the denominator of several terms in the system of Eqs. (30)–
(50) merely arises from the quasi-radial nature of the coordinate z and can be
handled straightforwardly in analogy to the treatment of the origin in spherical or
axisymmetry.

We will present the regularized terms needed in the generic SO(D−d) symmetry;
however, it should be noted that terms involving the inverse metric become much
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more complicated for a large d, and so we will also explicitly show these terms for
the most common case, d = 3.

We first require that all components expressed in a fully Cartesian set of coor-
dinates are regular. A well-known consequence of this assumption is that tensor
density components containing an odd (even) number of radial, i.e. z, indices con-
tain only odd (even) powers of z in a series expansion around z = 0. The same holds
for quantities derived from tensors and densities such as the BSSN variable Γ̃i.

Next, we consider the inverse metric which we obtain through inversion of the
matrix equation (29). By constructing the cofactor matrix and dividing by the
determinant, we obtain, for d = 3

γ̃xx = γ̃η
ww

γ̃yyγ̃zz − γ̃2
yz

det γ̃IJ

, γ̃xy = γ̃η
ww

γ̃yzγ̃xz − γ̃xyγ̃zz

det γ̃IJ

, γ̃xz = γ̃η
ww

γ̃xyγ̃yz − γ̃xzγ̃yy

det γ̃IJ

,

· · · γ̃yy = γ̃η
ww

γ̃xxγ̃zz − γ̃2
xz

det γ̃IJ

, γ̃yz = γ̃η
ww

γ̃xyγ̃xz − γ̃xxγ̃yz

det γ̃IJ

,

· · · · · · γ̃zz = γ̃η
ww

γ̃xxγ̃yy − γ̃2
xy

det γ̃IJ

.

(B.1)

Next, we recall that the BSSN metric has unit determinant, so that

1 = det γ̃IJ = γ̃η
ww(γ̃xxγ̃yyγ̃zz + 2γ̃xyγ̃xzγ̃yz − γ̃xxγ̃

2
yz − γ̃yyγ̃

2
xz − γ̃zz γ̃

2
xy)

∗= γ̃η
wwγ̃zz(γ̃xxγ̃yy − γ̃2

xy), (B.2)

where we introduced the symbol “ ∗= ” to denote equality in the limit z → 0. The
components for the inverse BSSN metric in Eq. (B.1) simplify accordingly.

For a general d, we know that the matrix takes the form given in Eq. (29). Then,
denoting the cofactor matrix for a given element of γ̃IJ by CIJ , the inverse BSSN
metric components are (note that the metric is symmetric, so that CIJ = CJI)

γ̃x1x1
=

Cx1x1

det γ̃IJ

, · · · , γ̃x1xd−1
=
Cx1xd−1

det γ̃IJ

, γ̃x1z =
Cx1z

det γ̃IJ

,

...
. . .

...
...

... · · · γ̃xd−1xd−1
=
Cxd−1xd−1

det γ̃IJ

, γ̃xd−1z =
Cxd−1z

det γ̃IJ

· · · · · · · · · γ̃zz =
Czz

det γ̃IJ

.

(B.3)

Again, in the BSSN case det γ̃IJ = 1, and the inverse metric element is simply
the cofactor of that element. For simplicity, we will use indices î in place of xî in
the remainder of this section, so that, for example C12 ≡ Cx1x2 , C1z ≡ Cx1z etc.
When used without a caret, the lower case Latin indices i, j, . . . also include the z
component.
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If we denote the upper-left quadrant of the matrix in Eq. (29) as the matrix
Mij , then we can write the cofactor of an element in this upper-left quadrant as

Cij = (−1)i+j γ̃η
ww det(Mkl{k �=j,l �=i}). (B.4)

Here, the notation det(Mkl{k �=j,l �=i}) denotes the determinant of the matrix obtained
by crossing out the jth row and ith column. Likewise, we may add further inequal-
ities inside the braces to denote matrices obtained by crossing out more than one
row and column.

The next regularity condition we require our spacetime to satisfy is the absence
of a conical singularity at z = 0. In polar coordinates (ρ, ϕ) constructed as in
Sec. 2.2, this condition can be expressed as γ̃ϕϕ = ρ2γ̃ρρ which translates into the
conditions

γ̃zz − γ̃ww
∗= O(z2), γ̃zz − γ̃ww ∗= O(z2), (B.5)

in Cartesian coordinates. By taking the time derivative of these relations and com-
bining these with Eqs. (33) and (34), we obtain an analogous relation for the trace-
less extrinsic curvature,

Ãzz − Ãww
∗= O(z2). (B.6)

We thus arrive at the following list of regularized terms valid in the limit z → 0.

(1) By expanding βz = b1z + b3z
3 + . . ., and likewise for Γ̃z and ∂zγ̃ww, we obtain

βz

z

∗= ∂zβz,
Γ̃z

z

∗= ∂zΓ̃z,
∂zγ̃ww

z

∗= ∂z∂zγ̃ww, (B.7)

and likewise for α or χ in place of γ̃ww in the last expression.
(2) We express the inverse metric components through their cofactors, given for

arbitrary d by Eq. (B.4), and then apply the same trading of divisions by z for
derivatives as done for βz/z, to obtain

δi
z − γ̃ziγ̃ww

z

∗=




d−1∑
m̂=1

(−1)m̂+î∂z(γ̃m̂z)γ̃η+1
ww det(Mjl{j �=z,j �=m̂,l �=i,l �=z}) if i = î,

0 if i = z.

(B.8)

Here, as well in items (5) and (9) below, we formally set det
(Mjl{j �=z,j �=m̂,l �=i,l �=z}) = 1 for the case d = 2 where no entries would be left in
the matrix after crossing out two rows and columns. For d = 1, the case i = î

does not arise which obviates the need to evaluate the determinant. For the
case d = 3, the expression (B.8) becomes

δi
z − γ̃ziγ̃ww

z

∗=



γ̃η+1

ww (γ̃yy∂zγ̃xz − γ̃xy∂zγ̃yz) if i = x,

γ̃η+1
ww (γ̃xx∂zγ̃yz − γ̃xy∂zγ̃xz) if i = y,

0 if i = z.

(B.9)
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(3) Expanding β î = b0+b2z2+ . . . and βz = b1z+b3z3 + . . . , we trade two divisions
by z for a second derivative and obtain

∂zβ
i

z
− δi

z
βz

z2
=

{
∂z∂zβ

î if i = î,

0 if i = z.
(B.10)

(4) We rewrite the term

γ̃im∂mβ
z

z
− γ̃iz β

z

z2
= γ̃im

(
∂mβ

z

z
− δz

m
βz

z2

)
, (B.11)

and expand βz = b1z + b3z
3 + . . . which leads to

∂mβ
z

z
− δz

m
βz

z2
=

{
∂m̂∂zβ

z if m = m̂

0 if m = z
. (B.12)

(5) Similarly to Eq. (B.8), we find for general d that

γ̃zm

z
∂mα =

d−1∑
m̂=1

d−1∑
î=1

(−1)m̂+î−1∂z(γ̃m̂z)γ̃η
ww det(Mjl{j �=z,j �=m̂,l �=î,l �=z})∂îα

+ γ̃zz∂z∂zα, (B.13)

where again we formally set det(Mjl{j �=z,j �=m̂,l �=i,l �=z}) = 1 for the case d = 2;
cf. item (2) above. For d = 3, we obtain

γ̃zm

z
∂mα = γ̃η

ww[(γ̃xy∂z γ̃yz − γ̃yy∂zγ̃xz)∂xα+ (γ̃xy∂zγ̃xz − γ̃xx∂zγ̃yz)∂yα]

+ γ̃zz∂z∂zα (B.14)

and likewise for χ in place of α.
(6) Using Ãzz − Ãww = O(z2), we obtain

Ãiz − δizÃww

z
=

{
∂zÃîz if i = î,

0 if i = z.
(B.15)

(7) Using γ̃zz − γ̃ww = O(z2) and trading a division by z for a z derivative, we find

− 1
2
∂zγ̃ij

z
+
δz(iγ̃j)z − δizδjz γ̃ww

z2
=




−1
2
∂z∂zγ̃îĵ if (i, j) = (î, ĵ),

0 if (i, j) = (î, z) or (z, ĵ),

−1
2
∂z∂zγ̃ww if (i, j) = (z, z).

(B.16)
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(8) Using γ̃wwγ̃zz − 1 = γ̃ww(γ̃zz − γww) = γ̃wwO(z2) and γ̃zî/z = ∂z γ̃zî, we can
rewrite

γ̃wwγ̃z(j − δz(j

z
∂i)γ̃ww =



γ̃ww∂zγ̃z(ĵ∂î)γ̃ww if (i, j) = (î, ĵ),

0 if (i, j) = (î, z) or (z, ĵ),

0 if (i, j) = (z, z).

(B.17)

(9) The term (γ̃zzγ̃ww − 1)/z2 requires slightly more work and we describe its
derivation here in a little more detail. We first rewrite this term in the form

γ̃zzγ̃ww − 1
z2

= −γ̃zz

1
γ̃zz

− γ̃ww

z2
, (B.18)

and express the inverse metric component γ̃zz in terms of the corresponding
cofactor matrix component and the determinant as

1
γ̃zz

=
det γ̃IJ

Czz
=
γ̃zzCzz

Czz
+

d−1∑
î=1

γ̃zîCzxî

Czz
. (B.19)

Note that these expressions are all valid for arbitrary values of z and we are
not yet using the BSSN condition det γ̃IJ = 1. We can now plug this relation
into Eq. (B.18). We then trade divisions by z for derivatives with respect to z,
bearing in mind that γ̃zz = γ̃ww + O(z2) and find

γ̃zzγ̃ww − 1
z2

∗=
γ̃zz

2
(∂z∂z γ̃ww − ∂z∂zγ̃zz) + γ̃zz

d−1∑
î=1

d−1∑
ĵ=1

(−1)î+ĵ γ̃η
ww

× (∂z γ̃zî)∂zγ̃ĵz

Czz
det(Mkl{k �=z,k �=ĵ,l �=î,l �=z}). (B.20)

Again, we formally set det(Mjl{j �=z,j �=m̂,l �=i,l �=z}) = 1 for the case d = 2; cf. item
(2) above. Finally, we use 1 = det γ̃IJ ⇒ Czz = γ̃zz to obtain

γ̃zzγ̃ww − 1
z2

∗=
γ̃zz

2
(∂z∂z γ̃ww − ∂z∂zγ̃zz)

+
d−1∑
î=1

d−1∑
ĵ=1

(−1)î+ĵ γ̃η
ww(∂z γ̃zî) ∂z γ̃zĵ det(Mkl {k �=z,k �=ĵ,l �=î,l �=z}).

(B.21)

For the case d = 3, this reduces to:

γ̃zzγ̃ww − 1
z2

∗=
γ̃zz

2
∂z∂z(γ̃ww − γ̃zz) − γ̃η

ww[2γ̃xy(∂zγ̃xz)∂z γ̃yz − γ̃xx(∂zγ̃yz)2

− γ̃yy(∂zγ̃xz)2]. (B.22)
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Appendix C. Cartesian Components in SO(2) Symmetry

The general case of SO(2) symmetry requires some modifications to the expressions
given in Appendix A. Here, we list these necessary changes. Recall that lower case
Latin indices with a caret range from 1, . . . , D − 3, since d = D − 2.

The expressions for scalars (A.1) and (A.2) remain unchanged. For vectors,
Eq. (A.3) no longer holds in SO(2) symmetry and is replaced by

∂wV
i = −δi

z
V w

z
, (C.1)

∂i∂wV
j = δj

z

(
−∂iV

w

z
+ δz

i
V w

z2

)
, (C.2)

∂w∂wV
w =

∂zV
w

z
− V w

z2
. (C.3)

For rank 2 tensors, Eq. (A.7) no longer holds. Instead, we have

∂wTîĵ = 0, (C.4)

∂wTiz = −1
z
Tiw − δzi

Tzw

z
, (C.5)

∂wTww = 2
Tzw

z
, (C.6)

∂i∂wTîĵ = 0, (C.7)

∂i∂wTjz = −∂iTjw + δzj∂iTwz

z
+ δiz

Tjw + δzjTzw

z2
, (C.8)

∂i∂wTww = 2
∂iTzw

z
− 2δiz

Tzw

z2
, (C.9)

∂w∂wTiw =
∂zTiw

z
− Tiw + 3δizTzw

z2
. (C.10)

As for the case of SO(D − d) symmetry, the above expressions need to be regu-
larized at z = 0. For Eqs. (C.1)–(C.3), we note that SO(2) symmetry implies that
vector components V w are odd functions of z on the w = 0 hyperplane. There-
fore, the regularization of vector components follows the procedure in Eqs. (B.7)
and (B.12).

For the regularization of Eqs. (C.4)–(C.10), note that components of type Tîw

behave like vector components, that is they are odd functions of z. The component
Tzw, on the other hand, has to vanish at z = 0 and must be an even function of z.
The latter can be seen by contracting Tµν with two vectors pointing in the w and
z direction respectively. The result must be a scalar which satisfies the symmetry
and is therefore even. Together with the fact that z and w components of vectors
are odd, this then implies that Tzw is even.
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Combining these relations with those previously discussed in Appendix B, we
obtain the following regularized terms specific to the case of SO(2) symmetry.

V w

z

∗= ∂zV
w, (C.11)

−∂iV
w

z
+ δz

i
V w

z2

∗=

{−∂i∂zV
w if i = î,

0 if i = z,
(C.12)

−Tiw

z
− δzi

Tzw

z

∗=

{−∂zTiw if i = î,

0 if i = z,
(C.13)

−∂iTjw + δjz∂iTwz

z
+ δiz

Tjw + δzjTzw

z2

∗=



−∂i∂zTjw if (i, j) = (î, ĵ),

0 if (i, j) = (z, ĵ) or (î, z),

−∂z∂zTwz if (i, j) = (z, z),

(C.14)

2
∂iTzw

z
− 2δiz

Tzw

z2

∗=

{
0 if i = î,

∂z∂zTzw if i = z,
(C.15)

∂zTiw

z
− Tiw + 3δizTzw

z2

∗=

{
0 if i = î,

−∂z∂zTzw if i = z.
(C.16)

Finally, we list for completeness the regularization of Eqs. (A.2), (A.5), (A.6), (A.9)–
(A.11) expressed here in terms of generic vector and tensor fields rather than the
BSSN variables,

∂zψ

z

∗= ∂z∂zψ, (C.17)

V z

z

∗= ∂zV
z, (C.18)

∂iV
z

z
− δz

i
V z

z2

∗=

{
∂i∂zV

z if i = î,

0 if i = z,
(C.19)

∂zV
i

z
− δi

z
V z

z2

∗=

{
∂z∂zV

i if i = î,

0 if i = z,
(C.20)

Tzz − Tww

z2

∗=
1
2
∂z∂z(Tzz − Tww), (C.21)

∂zTww

z

∗= ∂z∂zTww, (C.22)

Tiz − δizTww

z

∗=

{
∂zTiz if i = î,

0 if i = z,
(C.23)
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∂iTjz − δjz∂iTww

z
− δiz

Tjz − δjzTww

z2

∗=



∂i∂zTjz if (i, j) = (î, ĵ),

0 if (i, j) = (î, z) or (z, ĵ),

∂z∂z(Tzz − Tww)
2

if (i, j) = (z, z),

(C.24)

∂zTij

z
− δizTjz + δjzTiz − 2δizδjzTww

z2

∗=



∂z∂zTij if (i, j) = (î, ĵ),

0 if (i, j) = (î, z) or (z, ĵ),

∂z∂zTww if (i, j) = (z, z).

(C.25)
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