359 research outputs found
BOLD Coupling between Lesioned and Healthy Brain Is Associated with Glioma Patients’ Recovery
Predicting functional outcomes after surgery and early adjuvant treatment is difficult due to the complex, extended, interlocking brain networks that underpin cognition. The aim of this study was to test glioma functional interactions with the rest of the brain, thereby identifying the risk factors of cognitive recovery or deterioration. Seventeen patients with diffuse non-enhancing glioma (aged 22–56 years) were longitudinally MRI scanned and cognitively assessed before and after surgery and during a 12-month recovery period (55 MRI scans in total after exclusions). We initially found, and then replicated in an independent dataset, that the spatial correlation pattern between regional and global BOLD signals (also known as global signal topography) was associated with tumour occurrence. We then estimated the coupling between the BOLD signal from within the tumour and the signal extracted from different brain tissues. We observed that the normative global signal topography is reorganised in glioma patients during the recovery period. Moreover, we found that the BOLD signal within the tumour and lesioned brain was coupled with the global signal and that this coupling was associated with cognitive recovery. Nevertheless, patients did not show any apparent disruption of functional connectivity within canonical functional networks. Understanding how tumour infiltration and coupling are related to patients’ recovery represents a major step forward in prognostic development.Consejeria de Economia, Innovacion, Ciencia y Empleo.Junta de Andalucia CV20-45250; A-TIC-080-UGR18; B-TIC-586-UGR20; P20-0052
Association of Insulin Resistance With Schizophrenia Polygenic Risk Score and Response to Antipsychotic Treatment
This study examines the association between insulin resistance, schizophrenia polygenic risk, and treatment outcomes in first-episode, antipsychotic-naive patients with schizophrenia.Funding/Support: This work was supported by grants from the Stanley Medical Research Institute (Dr Bahn)
Exploring cellular markers of metabolic syndrome in peripheral blood mononuclear cells across the neuropsychiatric spectrum
Recent evidence suggests that comorbidities between neuropsychiatric conditions and metabolic syndrome may precede and even exacerbate long-term side-effects of psychiatric medication, such as a higher risk of type 2 diabetes and cardiovascular disease, which result in increased mortality. In the present study we compare the expression of key metabolic proteins, including the insulin receptor (CD220), glucose transporter 1 (GLUT1) and fatty acid translocase (CD36), on peripheral blood mononuclear cell subtypes from patients across the neuropsychiatric spectrum, including schizophrenia, bipolar disorder, major depression and autism spectrum conditions (n = 25/condition), relative to typical controls (n = 100). This revealed alterations in the expression of these proteins that were specific to schizophrenia. Further characterization of metabolic alterations in an extended cohort of first-onset antipsychotic drug-naïve schizophrenia patients (n = 58) and controls (n = 63) revealed that the relationship between insulin receptor expression in monocytes and physiological insulin sensitivity was disrupted in schizophrenia and that altered expression of the insulin receptor was associated with whole genome polygenic risk scores for schizophrenia. Finally, longitudinal follow-up of the schizophrenia patients over the course of antipsychotic drug treatment revealed that peripheral metabolic markers predicted changes in psychopathology and the principal side effect of weight gain at clinically relevant time points. These findings suggest that peripheral blood cells can provide an accessible surrogate model for metabolic alterations in schizophrenia and have the potential to stratify subgroups of patients with different clinical outcomes or a greater risk of developing metabolic complications following antipsychotic therapy
Effects of photooxidation on membrane integrity in Salix nigra seeds
Background and Aims: Salix nigra seeds are desiccation-tolerant, as are orthodox seeds, although in contrast to other orthodox seeds they lose viability in a few weeks at room temperature. They also differ in that the chloroplasts of the embryo tissues conserve their chlorophyll and endomembranes. The aim of this paper was to investigate the role of chlorophyll in seed deterioration. Methods: Seeds were aged at different light intensities and atmospheric conditions. Mean germination time and normal and total germination were evaluated. The formation of free radicals was assessed using electronic spin resonance spectroscopy, and changes in the fatty acid composition from phospholipids, galactolipids and triglycerides using gas-liquid chromatography. Membrane integrity was studied with electronic spin resonance spin probe techniques, electrolyte leakage and transmission electron microscopy. Key Results: Light and oxygen played an important role in free-radical generation, causing a decrease in normal germination and an increase in mean germination time. Both indices were associated with a decrease in polyunsaturated fatty acids derived from membrane lipids as phospholipids and galactolipids. The detection of damage in thylakoid membranes and an increase in plasmalemma permeability were consistent with the decrease in both types of lipids. Triglycerides remained unchanged. Light-induced damage began in outermost tissues and spread inwards, decreasing normal germination. Conclusions: Salix nigra seeds were very susceptible to photooxidation. The thylakoid membranes appeared to be the first target of the photooxidative process since there were large decreases in galactolipids and both these lipids and the activated chlorophyll are contiguous in the structure of that membrane. Changes in normal germination and mean germination time could be explained by the deteriorative effects of oxidation.Instituto de Investigaciones Bioquímicas de La Plat
1q21.1 distal copy number variants are associated with cerebral and cognitive alterations in humans
Low-frequency 1q21.1 distal deletion and duplication copy number variant (CNV) carriers are predisposed to multiple
neurodevelopmental disorders, including schizophrenia, autism and intellectual disability. Human carriers display a
high prevalence of micro- and macrocephaly in deletion and duplication carriers, respectively. The underlying brain
structural diversity remains largely unknown. We systematically called CNVs in 38 cohorts from the large-scale ENIGMA CNV collaboration and the UK Biobank and identified 28 1q21.1 distal deletion and 22 duplication carriers and 37,088
non-carriers (48% male) derived from 15 distinct magnetic resonance imaging scanner sites. With standardized
methods, we compared subcortical and cortical brain measures (all) and cognitive performance (UK Biobank only)
between carrier groups also testing for mediation of brain structure on cognition. We identified positive dosage effects
of copy number on intracranial volume (ICV) and total cortical surface area, with the largest effects in frontal and
cingulate cortices, and negative dosage effects on caudate and hippocampal volumes. The carriers displayed distinct
cognitive deficit profiles in cognitive tasks from the UK Biobank with intermediate decreases in duplication carriers and
somewhat larger in deletion carriers—the latter potentially mediated by ICV or cortical surface area. These results shed
light on pathobiological mechanisms of neurodevelopmental disorders, by demonstrating gene dose effect on
specific brain structures and effect on cognitive functio
Peripheral lymphocyte signaling pathway deficiencies predict treatment response in first-onset drug-naïve schizophrenia
Despite being a major cause of disability worldwide, the pathophysiology of schizophrenia and molecular basis of treatment response heterogeneity continue to be unresolved. Recent evidence suggests that multiple aspects of pathophysiology, including genetic risk factors, converge on key cell signaling pathways and that exploration of peripheral blood cells might represent a practical window into cell signaling alterations in the disease state. We employed multiplexed phospho-specific flow cytometry to examine cell signaling epitope expression in peripheral blood mononuclear cell (PBMC) subtypes in drug-naïve schizophrenia patients (n = 49) relative to controls (n = 61) and relate these changes to serum immune response proteins, schizophrenia polygenic risk scores and clinical effects of treatment, including drug response and side effects, over the longitudinal course of antipsychotic treatment. This revealed both previously characterized (Akt1) and novel cell signaling epitopes (IRF-7 (pS477/pS479), CrkL (pY207), Stat3 (pS727), Stat3 (pY705) and Stat5 (pY694)) across PBMC subtypes which were associated with schizophrenia at disease onset, and correlated with type I interferon-related serum molecules CD40 and CXCL11. Alterations in Akt1 and IRF-7 (pS477/pS479) were additionally associated with polygenic risk of schizophrenia. Finally, changes in Akt1, IRF-7 (pS477/pS479) and Stat3 (pS727) predicted development of metabolic and cardiovascular side effects following antipsychotic treatment, while IRF-7 (pS477/pS479) and Stat3 (pS727) predicted early improvements in general psychopathology scores measured using the Brief Psychiatric Rating Scale (BPRS). These findings suggest that peripheral blood cells can provide an accessible surrogate model for intracellular signaling alterations in schizophrenia and have the potential to stratify subgroups of patients with different clinical outcomes or a greater risk of developing metabolic and cardiovascular side effects following antipsychotic therapy
BOLD Coupling between Lesioned and Healthy Brain Is Associated with Glioma Patients’ Recovery
This article belongs to the Special Issue Perioperative Imaging and Mapping Methods in Glioma Patients.[Simple Summary] Glioma, a type of brain tumour, affects not only the function of immediately adjacent brain tissue but also that in more distant areas, potentially impacting cognitive function after its surgical removal. Here, 17 patients with glioma had brain scans and tests of cognitive function during treatment and recovery. We investigated the effects of glioma on the brain, and what happens during recovery, using the brain’s “global signal” detected with magnetic resonance imaging (MRI). We found that the signal from gliomas was synchronised with the global signal in all patients and that this synchronisation was associated with the recovery of cognition after surgery. Specifically, patients with a greater reduction in glioma–global signal synchronisation following surgery were more likely to have a larger number of newly acquired cognitive difficulties. Together, these results suggest that the interaction between gliomas and the brain can predict how patients recover their cognitive abilities, which is important for their quality of life.[Abstract] Predicting functional outcomes after surgery and early adjuvant treatment is difficult due to the complex, extended, interlocking brain networks that underpin cognition. The aim of this study was to test glioma functional interactions with the rest of the brain, thereby identifying the risk factors of cognitive recovery or deterioration. Seventeen patients with diffuse non-enhancing glioma (aged 22–56 years) were longitudinally MRI scanned and cognitively assessed before and after surgery and during a 12-month recovery period (55 MRI scans in total after exclusions). We initially found, and then replicated in an independent dataset, that the spatial correlation pattern between regional and global BOLD signals (also known as global signal topography) was associated with tumour occurrence. We then estimated the coupling between the BOLD signal from within the tumour and the signal extracted from different brain tissues. We observed that the normative global signal topography is reorganised in glioma patients during the recovery period. Moreover, we found that the BOLD signal within the tumour and lesioned brain was coupled with the global signal and that this coupling was associated with cognitive recovery. Nevertheless, patients did not show any apparent disruption of functional connectivity within canonical functional networks. Understanding how tumour infiltration and coupling are related to patients’ recovery represents a major step forward in prognostic development.This research was supported by the Guarantors of Brain, Cancer Research UK Cambridge Centre, The Brain Tumour Charity and the EMERGIA Junta de Andalucia program. Y.E. is funded by a Royal Society Dorothy Hodgkin Research Fellowship (DHF130100). JMG is funded by the Ministerio de Ciencia e Innovación (España)/FEDER under the RTI2018-098913-B100 project, by the Consejería de Economía, Innovación, Ciencia y Empleo (Junta de Andalucía) and FEDER under CV20-45250, A-TIC-080-UGR18, B-TIC-586-UGR20 and P20-00525 projects. MA was funded by a Cambridge Trust—Yousef Jameel Scholarship. This research was also supported by the NIHR Cambridge Biomedical Research Centre (BRC-1215-20014). SJP (NIHR Career Development Fellowship, CDF-2018-11-ST2-003) is funded by the National Institute for Health Research (NIHR) for this research project
Bold coupling between lesioned and healthy brain is associated with glioma patients’ recovery
Predicting functional outcomes after surgery and early adjuvant treatment is difficult due to the complex, extended, interlocking brain networks that underpin cognition. The aim of this study was to test glioma functional interactions with the rest of the brain, thereby identifying the risk factors of cognitive recovery or deterioration. Seventeen patients with diffuse non-enhancing glioma (aged 22–56 years) were longitudinally MRI scanned and cognitively assessed before and after surgery and during a 12-month recovery period (55 MRI scans in total after exclusions). We initially found, and then replicated in an independent dataset, that the spatial correlation pattern between regional and global BOLD signals (also known as global signal topography) was associated with tumour occurrence. We then estimated the coupling between the BOLD signal from within the tumour and the signal extracted from different brain tissues. We observed that the normative global signal topography is reorganised in glioma patients during the recovery period. Moreover, we found that the BOLD signal within the tumour and lesioned brain was coupled with the global signal and that this coupling was associated with cognitive recovery. Nevertheless, patients did not show any apparent disruption of functional connectivity within canonical functional networks. Understanding how tumour infiltration and coupling are related to patients’ recovery represents a major step forward in prognostic development.</p
Sexual regional dimorphism of post-adolescent and middle age brain maturation. A multi-center 3T MRI study
Sex-related differences are tied into neurodevelopmental and lifespan processes, beginning early in the perinatal and developmental phases and continue into adulthood. The present study was designed to investigate sexual dimorphism of changes in gray matter (GM) volume in post-adolescence, with a focus on early and middle-adulthood using a structural magnetic resonance imaging (MRI) dataset of healthy controls from the European Network on Psychosis, Affective disorders and Cognitive Trajectory (ENPACT). Three hundred and seventy three subjects underwent a 3.0 T MRI session across four European Centers. Age by sex effects on GM volumes were investigated using voxel-based morphometry (VBM) and the Automated Anatomical Labeling atlas regions (ROI). Females and males showed overlapping and non-overlapping patterns of GM volume changes during aging. Overlapping age-related changes emerged in bilateral frontal and temporal cortices, insula and thalamus. Both VBM and ROI analyses revealed non-overlapping changes in multiple regions, including cerebellum and vermis, bilateral mid frontal, mid occipital cortices, left inferior temporal and precentral gyri. These findings highlight the importance of accounting for sex differences in cross-sectional analyses, not only in the study of normative changes, but particularly in the context of psychiatric and neurologic disorders, wherein sex effects may be confounded with disease-related changes
- …