59,945 research outputs found
Probabilistic teleportation of unknown two-particle state via POVM
We propose a scheme for probabilistic teleportation of unknown two-particle
state with partly entangled four-particle state via POVM. In this scheme the
teleportation of unknown two-particle state can be realized with certain
probability by performing two Bell state measurements, a proper POVM and a
unitary transformation.Comment: 5 pages, no figur
Consistency of shared reference frames should be reexamined
In a recent Letter [G. Chiribella et al., Phys. Rev. Lett. 98, 120501
(2007)], four protocols were proposed to secretly transmit a reference frame.
Here We point out that in these protocols an eavesdropper can change the
transmitted reference frame without being detected, which means the consistency
of the shared reference frames should be reexamined. The way to check the above
consistency is discussed. It is shown that this problem is quite different from
that in previous protocols of quantum cryptography.Comment: 3 pages, 1 figure, comments are welcom
A Simultaneous Quantum Secure Direct Communication Scheme between the Central Party and Other M Parties
We propose a simultaneous quantum secure direct communication scheme between
one party and other three parties via four-particle GHZ states and swapping
quantum entanglement. In the scheme, three spatially separated senders, Alice,
Bob and Charlie, transmit their secret messages to a remote receiver Diana by
performing a series local operations on their respective particles according to
the quadripartite stipulation. From Alice, Bob, Charlie and Diana's Bell
measurement results, Diana can infer the secret messages. If a perfect quantum
channel is used, the secret messages are faithfully transmitted from Alice, Bob
and Charlie to Diana via initially shared pairs of four-particle GHZ states
without revealing any information to a potential eavesdropper. As there is no
transmission of the qubits carrying the secret message in the public channel,
it is completely secure for the direct secret communication. This scheme can be
considered as a network of communication parties where each party wants to
communicate secretly with a central party or server.Comment: 4 pages, no figur
Quantum asymmetric cryptography with symmetric keys
Based on quantum encryption, we present a new idea for quantum public-key
cryptography (QPKC) and construct a whole theoretical framework of a QPKC
system. We show that the quantum-mechanical nature renders it feasible and
reasonable to use symmetric keys in such a scheme, which is quite different
from that in conventional public-key cryptography. The security of our scheme
is analyzed and some features are discussed. Furthermore, the state-estimation
attack to a prior QPKC scheme is demonstrated.Comment: 8 pages, 1 figure, Revtex
Compact Circularly Polarized Patch Antenna Using a Composite Right/Left-Handed Transmission Line Unit-Cell
A compact circularly polarized (CP) patch antenna using a composite right/left-handed (CRLH) transmission line (TL) unit-cell is proposed. The CRLH TL unit-cell includes a complementary split ring resonator (CSRR) for shunt inductance and a gap loaded with a circular-shaped slot for series capacitance. The CSRR can decrease the TM10 mode resonance frequency, thus reducing the electrical size of the proposed antenna. In addition, the asymmetry of the CSRR brings about the TM01 mode, which can be combined with the TM10 mode by changing the slot radius. The combination of these two orthogonal modes with 90° phase shift makes the proposed antenna provide a CP property. The experimental results show that the proposed antenna has a wider axial ratio bandwidth and a smaller electrical size than the reported CP antennas. Moreover, the proposed antenna is designed without impedance transformer, 90° phase shift, dual feed and ground via
Adiabatic Invariants and Scalar Fields in a de Sitter Space-Time
The method of adiabatic invariants for time dependent Hamiltonians is applied
to a massive scalar field in a de Sitter space-time. The scalar field ground
state, its Fock space and coherent states are constructed and related to the
particle states. Diverse quantities of physical interest are illustrated, such
as particle creation and the way a classical probability distribution emerges
for the system at late times.Comment: 9 pages, Latex, no figure
Modeling the functional genomics of autism using human neurons.
Human neural progenitors from a variety of sources present new opportunities to model aspects of human neuropsychiatric disease in vitro. Such in vitro models provide the advantages of a human genetic background combined with rapid and easy manipulation, making them highly useful adjuncts to animal models. Here, we examined whether a human neuronal culture system could be utilized to assess the transcriptional program involved in human neural differentiation and to model some of the molecular features of a neurodevelopmental disorder, such as autism. Primary normal human neuronal progenitors (NHNPs) were differentiated into a post-mitotic neuronal state through addition of specific growth factors and whole-genome gene expression was examined throughout a time course of neuronal differentiation. After 4 weeks of differentiation, a significant number of genes associated with autism spectrum disorders (ASDs) are either induced or repressed. This includes the ASD susceptibility gene neurexin 1, which showed a distinct pattern from neurexin 3 in vitro, and which we validated in vivo in fetal human brain. Using weighted gene co-expression network analysis, we visualized the network structure of transcriptional regulation, demonstrating via this unbiased analysis that a significant number of ASD candidate genes are coordinately regulated during the differentiation process. As NHNPs are genetically tractable and manipulable, they can be used to study both the effects of mutations in multiple ASD candidate genes on neuronal differentiation and gene expression in combination with the effects of potential therapeutic molecules. These data also provide a step towards better understanding of the signaling pathways disrupted in ASD
Effective potentials for atom-atom interaction at low temperatures
We discuss the concept and design of effective atom-atom potentials that
accurately describe any physical processes involving only states around the
threshold. The existence of such potentials gives hope to a quantitative, and
systematic, understanding of quantum few-atom and quantum many-atom systems at
relatively low temperatures.Comment: 4 pages, 4 figure
- …