11,620 research outputs found

    Systematic Inclusion of High-Order Multi-Spin Correlations for the Spin-121\over2 XXZXXZ Models

    Full text link
    We apply the microscopic coupled-cluster method (CCM) to the spin-121\over2 XXZXXZ models on both the one-dimensional chain and the two-dimensional square lattice. Based on a systematic approximation scheme of the CCM developed by us previously, we carry out high-order {\it ab initio} calculations using computer-algebraic techniques. The ground-state properties of the models are obtained with high accuracy as functions of the anisotropy parameter. Furthermore, our CCM analysis enables us to study their quantum critical behavior in a systematic and unbiased manner.Comment: (to appear in PRL). 4 pages, ReVTeX, two figures available upon request. UMIST Preprint MA-000-000

    Phase Transitions in the Spin-Half J_1--J_2 Model

    Full text link
    The coupled cluster method (CCM) is a well-known method of quantum many-body theory, and here we present an application of the CCM to the spin-half J_1--J_2 quantum spin model with nearest- and next-nearest-neighbour interactions on the linear chain and the square lattice. We present new results for ground-state expectation values of such quantities as the energy and the sublattice magnetisation. The presence of critical points in the solution of the CCM equations, which are associated with phase transitions in the real system, is investigated. Completely distinct from the investigation of the critical points, we also make a link between the expansion coefficients of the ground-state wave function in terms of an Ising basis and the CCM ket-state correlation coefficients. We are thus able to present evidence of the breakdown, at a given value of J_2/J_1, of the Marshall-Peierls sign rule which is known to be satisfied at the pure Heisenberg point (J_2 = 0) on any bipartite lattice. For the square lattice, our best estimates of the points at which the sign rule breaks down and at which the phase transition from the antiferromagnetic phase to the frustrated phase occurs are, respectively, given (to two decimal places) by J_2/J_1 = 0.26 and J_2/J_1 = 0.61.Comment: 28 pages, Latex, 2 postscript figure

    Optical alignment system Patent

    Get PDF
    Electro-optical/computer system for aligning large structural members and maintaining correct positio

    Profile blunting and flow blockage in a yield stress fluid: A molecular dynamics study

    Full text link
    The flow of a simple glass forming system (a 80:20 binary Lennard-Jones mixture) through a planar channel is studied via molecular dynamics simulations. The flow is driven by an external body force similar to gravity. Previous studies show that the model exhibits both a static [Varnik et al. J. Chem. Phys. 120, 2788 (2004)] and a dynamic [F. Varnik and O. Henrich Phys. Rev. B 73, 174209 (2006)] yield stress in the glassy phase. \blue{These observations are corroborated by the present work, where we investigate how the presence of a yield stress may affect the system behavior in a Poiseuille-type flow geometry.} In particular, we observe a blunted velocity profile across the channel: A relatively wide region in the channel center flows with a constant velocity (zero shear rate) followed by a non linear change of the shear rate as the walls are approached. The observed velocity gradients are compared to those obtained from the knowledge of the shear stress across the channel and the flow-curves (stress versus shear rate), the latter being determined in our previous simulations of homogeneous shear flow. Furthermore, using the value of the (dynamic) yield stress known from previous simulations, we estimate the threshold body force for a complete arrest of the flow. Indeed, a blockage is observed as the imposed force falls below this threshold value. Small but finite shear rates are observed at stresses above the dynamic but below the static yield stress. We discuss the possible role of the \blue{stick-slip like motion} for this observation.Comment: 22 pages, 8 figure

    Continuum coupled cluster expansion

    Full text link
    We review the basics of the coupled-cluster expansion formalism for numerical solutions of the many-body problem, and we outline the principles of an approach directed towards an adequate inclusion of continuum effects in the associated single-energy spectrum. We illustrate our findings by considering the simple case of a single-particle quantum mechanics problem.Comment: 16 pages, 1 figur

    Correlation-induced metal insulator transition in a two-channel fermion-boson model

    Full text link
    We investigate charge transport within some background medium by means of an effective lattice model with a novel form of fermion-boson coupling. The bosons describe fluctuations of a correlated background. By analyzing groundstate and spectral properties of this transport model, we show how a metal-insulator quantum phase transition can occur for the half-filled band case. We discuss the evolution of a mass-asymmetric band structure in the insulating phase and establish connections to the Mott and Peierls transition scenarios.Comment: 4 pages, 4 figures, 1 table, revised version accepted for publication in Phys. Rev. Let

    Cosmic Electromagnetic Fields due to Perturbations in the Gravitational Field

    Get PDF
    We use non-linear gauge-invariant perturbation theory to study the interaction of an inflation produced seed magnetic field with density and gravitational wave perturbations in an almost Friedmann-Lema\^itre-Robertson-Walker (FLRW) spacetime. We compare the effects of this coupling under the assumptions of poor conductivity, infinite conductivity and the case where the electric field is sourced via the coupling of velocity perturbations to the seed field in the ideal magnetohydrodynamic (MHD) regime, thus generalizing, improving on and correcting previous results. We solve our equations for long wavelength limits and numerically integrate the resulting equations to generate power spectra for the electromagnetic field variables, showing where the modes cross the horizon. We find that the rotation of the electric field dominates the power spectrum on small scales, in agreement with previous arguments.Comment: 16 pages, 3 figures, published in PR
    • …
    corecore