1,869 research outputs found
Multiquantum well spin oscillator
A dc voltage biased II-VI semiconductor multiquantum well structure attached
to normal contacts exhibits self-sustained spin-polarized current oscillations
if one or more of its wells are doped with Mn. Without magnetic impurities, the
only configurations appearing in these structures are stationary. Analysis and
numerical solution of a nonlinear spin transport model yield the minimal number
of wells (four) and the ranges of doping density and spin splitting needed to
find oscillations.Comment: 11 pages, 2 figures, shortened and updated versio
Non-linear Gradient Algorithm for Parameter Estimation: Extended version
Gradient algorithms are classical in adaptive control and parameter
estimation. For instantaneous quadratic cost functions they lead to a linear
time-varying dynamic system that converges exponentially under persistence of
excitation conditions. In this paper we consider (instantaneous) non-quadratic
cost functions, for which the gradient algorithm leads to non-linear (and non
Lipschitz) time-varying dynamics, which are homogeneous in the state. We show
that under persistence of excitation conditions they also converge globally,
uniformly and asymptotically. Compared to the linear counterpart, they
accelerate the convergence and can provide for finite-time or fixed-time
stability.Comment: 9 pages, 5 figure
Magnetoswitching of current oscillations in diluted magnetic semiconductor nanostructures
Strongly nonlinear transport through Diluted Magnetic Semiconductor
multiquantum wells occurs due to the interplay between confinement, Coulomb and
exchange interaction. Nonlinear effects include the appearance of spin
polarized stationary states and self-sustained current oscillations as possible
stable states of the nanostructure, depending on its configuration and control
parameters such as voltage bias and level splitting due to an external magnetic
field. Oscillatory regions grow in size with well number and level splitting. A
systematic analysis of the charge and spin response to voltage and magnetic
field switching of II-VI Diluted Magnetic Semiconductor multiquantum wells is
carried out. The description of stationary and time-periodic spin polarized
states, the transitions between them and the responses to voltage or magnetic
field switching have great importance due to the potential implementation of
spintronic devices based on these nanostructures.Comment: 14 pages, 4 figures, Revtex, to appear in PR
Self-Similarity for Ballistic Aggregation Equation
We consider ballistic aggregation equation for gases in which each particle
is iden- ti?ed either by its mass and impulsion or by its sole impulsion. For
the constant aggregation rate we prove existence of self-similar solutions as
well as convergence to the self-similarity for generic solutions. For some
classes of mass and/or impulsion dependent rates we are also able to estimate
the large time decay of some moments of generic solutions or to build some new
classes of self-similar solutions
Observational Characterization of the Downward Atmospheric Longwave Radiation at the Surface in the City of São Paulo
This work describes the seasonal and diurnal variations of downward longwave atmospheric irradiance (LW) at the surface in São Paulo, Brazil, using 5-min-averaged values of LW, air temperature, relative humidity, and solar radiation observed continuously and simultaneously from 1997 to 2006 on a micrometeorological platform, located at the top of a 4-story building. An objective procedure, including 2-step filtering and dome emission effect correction, was used to evaluate the quality of the 9-yr-long LW dataset. The comparison between LW values observed and yielded by the Surface Radiation Budget project shows spatial and temporal agreement, indicating that monthly and annual average values of LW observed in one point of São Paulo can be used as representative of the entire metropolitan region of São Paulo. The maximum monthly averaged value of the LW is observed during summer (389 ± 14 W m-2; January), and the minimum is observed during winter (332 ± 12 W m-2; July). The effective emissivity follows the LW and shows a maximum in summer (0.907 ± 0.032; January) and a minimum in winter (0.818 ± 0.029; June). The mean cloud effect, identified objectively by comparing the monthly averaged values of the LW during clear-sky days and all-sky conditions, intensified the monthly average LW by about 32.0 ± 3.5 W m-2 and the atmospheric effective emissivity by about 0.088 ± 0.024. In August, the driest month of the year in São Paulo, the diurnal evolution of the LW shows a minimum (325 ± 11 W m-2) at 0900 LT and a maximum (345 ± 12 W m-2) at 1800 LT, which lags behind (by 4 h) the maximum diurnal variation of the screen temperature. The diurnal evolution of effective emissivity shows a minimum (0.781 ± 0.027) during daytime and a maximum (0.842 ± 0.030) during nighttime. The diurnal evolution of all-sky condition and clear-sky day differences in the effective emissivity remain relatively constant (7% ± 1%), indicating that clouds do not change the emissivity diurnal pattern. The relationship between effective emissivity and screen air temperature and between effective emissivity and water vapor is complex. During the night, when the planetary boundary layer is shallower, the effective emissivity can be estimated by screen parameters. During the day, the relationship between effective emissivity and screen parameters varies from place to place and depends on the planetary boundary layer process. Because the empirical expressions do not contain enough information about the diurnal variation of the vertical stratification of air temperature and moisture in São Paulo, they are likely to fail in reproducing the diurnal variation of the surface emissivity. The most accurate way to estimate the LW for clear-sky conditions in São Paulo is to use an expression derived from a purely empirical approach
Self-similar chain conformations in polymer gels
We use molecular dynamics simulations to study the swelling of randomly
end-cross-linked polymer networks in good solvent conditions. We find that the
equilibrium degree of swelling saturates at Q_eq = N_e**(3/5) for mean strand
lengths N_s exceeding the melt entanglement length N_e. The internal structure
of the network strands in the swollen state is characterized by a new exponent
nu=0.72. Our findings are in contradiction to de Gennes' c*-theorem, which
predicts Q_eq proportional N_s**(4/5) and nu=0.588. We present a simple Flory
argument for a self-similar structure of mutually interpenetrating network
strands, which yields nu=7/10 and otherwise recovers the classical Flory-Rehner
theory. In particular, Q_eq = N_e**(3/5), if N_e is used as effective strand
length.Comment: 4 pages, RevTex, 3 Figure
ABJ(M) Chiral Primary Three-Point Function at Two-loops
This article is distributed under the terms of the Creative Commons
Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.archiveprefix: arXiv primaryclass: hep-th reportnumber: QMUL-PH-14-10 slaccitation: %%CITATION = ARXIV:1404.1117;%%archiveprefix: arXiv primaryclass: hep-th reportnumber: QMUL-PH-14-10 slaccitation: %%CITATION = ARXIV:1404.1117;%%archiveprefix: arXiv primaryclass: hep-th reportnumber: QMUL-PH-14-10 slaccitation: %%CITATION = ARXIV:1404.1117;%%Article funded by SCOAP
Group analysis of a class of nonlinear Kolmogorov equations
A class of (1+2)-dimensional diffusion-convection equations (nonlinear
Kolmogorov equations) with time-dependent coefficients is studied with Lie
symmetry point of view. The complete group classification is achieved using a
gauging of arbitrary elements (i.e. via reducing the number of variable
coefficients) with the application of equivalence transformations. Two possible
gaugings are discussed in detail in order to show how equivalence groups serve
in making the optimal choice.Comment: 12 pages, 4 table
- …
