741 research outputs found
Scale Invariance and Self-averaging in disordered systems
In a previous paper we found that in the random field Ising model at zero
temperature in three dimensions the correlation length is not self-averaging
near the critical point and that the violation of self-averaging is maximal.
This is due to the formation of bound states in the underlying field theory. We
present a similar study for the case of disordered Potts and Ising ferromagnets
in two dimensions near the critical temperature. In the random Potts model the
correlation length is not self-averaging near the critical temperature but the
violation of self-averaging is weaker than in the random field case. In the
random Ising model we find still weaker violations of self-averaging and we
cannot rule out the possibility of the restoration of self-averaging in the
infinite volume limit.Comment: 7 pages, 4 ps figure
Replica Symmetry Breaking and the Renormalization Group Theory of the Weakly Disordered Ferromagnet
We study the critical properties of the weakly disordered -component
ferromagnet in terms of the renormalization group (RG) theory generalized to
take into account the replica symmetry breaking (RSB) effects coming from the
multiple local minima solutions of the mean-field equations. It is shown that
for the traditional RG flows at dimensions , which are
usually considered as describing the disorder-induced universal critical
behavior, are unstable with respect to the RSB potentials as found in spin
glasses. It is demonstrated that for a general type of the Parisi RSB
structures there exists no stable fixed points, and the RG flows lead to the
{\it strong coupling regime} at the finite scale , where
is the small parameter describing the disorder. The physical concequences
of the obtained RG solutions are discussed. In particular, we argue, that
discovered RSB strong coupling phenomena indicate on the onset of a new spin
glass type critical behaviour in the temperature interval near . Possible relevance of the considered RSB effects for
the Griffith phase is also discussed.Comment: 32 pages, Late
Negative response to an excessive bias by a mixed population of voters
We study an outcome of a vote in a population of voters exposed to an
externally applied bias in favour of one of two potential candidates. The
population consists of ordinary individuals, that are in majority and tend to
align their opinion with the external bias, and some number of contrarians ---
individuals who are always hostile to the bias but are not in a conflict with
ordinary voters. The voters interact among themselves, all with all, trying to
find an opinion reached by the community as a whole. We demonstrate that for a
sufficiently weak external bias, the opinion of ordinary individuals is always
decisive and the outcome of the vote is in favour of the preferential
candidate. On the contrary, for an excessively strong bias, the contrarians
dominate in the population's opinion, producing overall a negative response to
the imposed bias. We also show that for sufficiently strong interactions within
the community, either of two subgroups can abruptly change an opinion of the
other group.Comment: 11 pages, 6 figure
Non-perturbative phenomena in the three-dimensional random field Ising model
The systematic approach for the calculations of the non-perturbative
contributions to the free energy in the ferromagnetic phase of the random field
Ising model is developed. It is demonstrated that such contributions appear due
to localized in space instanton-like excitations. It is shown that away from
the critical region such instanton solutions are described by the set of the
mean-field saddle-point equations for the replica vector order parameter, and
these equations can be formally reduced to the only saddle-point equation of
the pure system in dimensions (D-2). In the marginal case, D=3, the
corresponding non-analytic contribution is computed explicitly. Nature of the
phase transition in the three-dimensional random field Ising model is
discussed.Comment: 12 page
The Unusual Universality of Branching Interfaces in Random Media
We study the criticality of a Potts interface by introducing a {\it froth}
model which, unlike its SOS Ising counterpart, incorporates bubbles of
different phases. The interface is fractal at the phase transition of a pure
system. However, a position space approximation suggests that the probability
of loop formation vanishes marginally at a transition dominated by {\it strong
random bond disorder}. This implies a linear critical interface, and provides a
mechanism for the conjectured equivalence of critical random Potts and Ising
models.Comment: REVTEX, 13 pages, 3 Postscript figures appended using uufile
Mean-field glass transition in a model liquid
We investigate the liquid-glass phase transition in a system of point-like
particles interacting via a finite-range attractive potential in D-dimensional
space. The phase transition is driven by an `entropy crisis' where the
available phase space volume collapses dramatically at the transition. We
describe the general strategy underlying the first-principles replica
calculation for this type of transition; its application to our model system
then allows for an analytic description of the liquid-glass phase transition
within a mean-field approximation, provided the parameters are chosen suitably.
We find a transition exhibiting all the features associated with an `entropy
crisis', including the characteristic finite jump of the order parameter at the
transition while the free energy and its first derivative remain continuous.Comment: 12 pages, 6 figure
Current-mediated synchronization of a pair of beating non-identical flagella
The basic phenomenology of experimentally observed synchronization (i.e., a
stochastic phase locking) of identical, beating flagella of a biflagellate alga
is known to be captured well by a minimal model describing the dynamics of
coupled, limit-cycle, noisy oscillators (known as the noisy Kuramoto model). As
demonstrated experimentally, the amplitudes of the noise terms therein, which
stem from fluctuations of the rotary motors, depend on the flagella length.
Here we address the conceptually important question which kind of synchrony
occurs if the two flagella have different lengths such that the noises acting
on each of them have different amplitudes. On the basis of a minimal model,
too, we show that a different kind of synchrony emerges, and here it is
mediated by a current carrying, steady-state; it manifests itself via
correlated "drifts" of phases. We quantify such a synchronization mechanism in
terms of appropriate order parameters and - for an ensemble of
trajectories and for a single realization of noises of duration ,
respectively. Via numerical simulations we show that both approaches become
identical for long observation times . This reveals an ergodic
behavior and implies that a single-realization order parameter is
suitable for experimental analysis for which ensemble averaging is not always
possible.Comment: 10 pages, 2 figure
The One-dimensional KPZ Equation and the Airy Process
Our previous work on the one-dimensional KPZ equation with sharp wedge
initial data is extended to the case of the joint height statistics at n
spatial points for some common fixed time. Assuming a particular factorization,
we compute an n-point generating function and write it in terms of a Fredholm
determinant. For long times the generating function converges to a limit, which
is established to be equivalent to the standard expression of the n-point
distribution of the Airy process.Comment: 15 page
Random Bond Ising Model and Massless Phase of the Gross-Neveu Model
The Gross-Neveu model for presents a massless phase that can
be characterized by right-left mover scattering processes. The limit n \goto
0 describes the on-shell properties of the random bond Ising model.Comment: 7 pages, Latex, no figure
Vertex Operators for Deformed Virasoro Algebra
Vertex operators for the deformed Virasoro algebra are defined, their bosonic
representation is constructed and difference equation for the simplest vertex
operators is described.Comment: stylistic errors correcte
- …