The basic phenomenology of experimentally observed synchronization (i.e., a
stochastic phase locking) of identical, beating flagella of a biflagellate alga
is known to be captured well by a minimal model describing the dynamics of
coupled, limit-cycle, noisy oscillators (known as the noisy Kuramoto model). As
demonstrated experimentally, the amplitudes of the noise terms therein, which
stem from fluctuations of the rotary motors, depend on the flagella length.
Here we address the conceptually important question which kind of synchrony
occurs if the two flagella have different lengths such that the noises acting
on each of them have different amplitudes. On the basis of a minimal model,
too, we show that a different kind of synchrony emerges, and here it is
mediated by a current carrying, steady-state; it manifests itself via
correlated "drifts" of phases. We quantify such a synchronization mechanism in
terms of appropriate order parameters Q and QS - for an ensemble of
trajectories and for a single realization of noises of duration S,
respectively. Via numerical simulations we show that both approaches become
identical for long observation times S. This reveals an ergodic
behavior and implies that a single-realization order parameter QS is
suitable for experimental analysis for which ensemble averaging is not always
possible.Comment: 10 pages, 2 figure