824 research outputs found

    Externally blown flap noise research

    Get PDF
    The Lewis Research Center cold-flow model externally blown flap (EBF) noise research test program is summarized. Both engine under-the-wing and over-the-wing EBF wing section configurations were studied. Ten large scale and nineteen small scale EBF models were tested. A limited number of forward airspeed effect and flap noise suppression tests were also run. The key results and conclusions drawn from the flap noise tests are summarized and discussed

    A Photographic Study of Freezing of Water Droplets Falling Freely in Air

    Get PDF
    A photographic technique for investigating water droplets of diameter less than 200 microns falling freely in air at temperatures between 0 C and -50 C has been devised and used to determine: (i) The shape of frozen droplets (2) The occurrence of collisions of partly frozen or of frozen and liquid droplets (3) The statistics on the freezing temperatures of individual free-falling droplets A considerable number of droplets were found to have a nonspherical shape after freezing because of various protuberances and frost growth, and droplet aggregates formed by collision. The observed frequency of collision of partly frozen droplets showed good order of magnitude agreement with the frequency computed from theoretical collection efficiencies. The freezing temperature statistics indicated a general similarity of the data to those obtained for droplets frozen on a metallic surface in previous experiments

    X-Ray Diffraction Study of the Internal Structure of Supercooled Water

    Get PDF
    A Bragg X-ray spectrometer equipped with a volume-sensitive Geiger counter and Soller slits and employing filtered molybdenum Ka radiation was used to obtain a set of diffracted intensity curves as a Punction of angle for supercooled water. Diffracted intensity curves in the temperature region of 21 to -16 C were obtained. The minimum between the two main diffraction peaks deepened continuously with lowering temperature, indicating a gradual change in the internal structure of the water. No discontinuity in this trend was noted at the melting point. The internal structure of supercooled water was concluded to become progressively more ice-like as the temperature is lowered

    Photomicrographic Investigation of Spontaneous Freezing Temperatures of Supercooled Water Droplets

    Get PDF
    A photomicrographic technique for investigating eupercooled. water droplets has been devised and. used. to determine the spontaneous freezing temperatures of eupercooled. water droplets of the size ordinarily found. in the atmosphere. The freezing temperatures of 4527 droplets ranging from 8.75 to 1000 microns in diameter supported on a platinum surface and 571 droplets supported on copper were obtained. The average spontaneous freezing temperature decreased with decrease in the size of the droplets. The effect of size on the spontaneous freezing temperature was particularly marked below 60 microns. Frequency-distribution curves of the spontaneous freezing temperatures observed for droplets of a given size were obtained. Although no droplet froze at a temperature above 20 0 F, all droplets melted at 32 F. Results obtained with a copper support did not differ essentially from those obtained with a platinum surface

    Variation of Local Liquid-Water Concentration About an Ellipsoid of Fineness Ratio 10 Moving in a Droplet Field

    Get PDF
    Trajectories of water droplets about an ellipsoid of revolution with a fineness ratio of 10 (10 percent thick) in flight through a droplet field were computed with the aid of a differential analyzer. Analyses of these trajectories indicate that the local concentration of liquid water at various points about an ellipsoid varies considerably and under some conditions may be several times the free-stream concentration. Curves of the local concentration factor as a function of spatial position were obtained and are presented in terms of dimensionless parameters that describe flight and atmospheric conditions. The data indicate that the expected local concentration factors should be considered when choosing the location of devices that protrude into the stream from aircraft fuselages or missiles, or when determining antiicing heat requirements for the protection of these devices

    A Method for Determining Cloud-Droplet Impingement on Swept Wings

    Get PDF
    The general effect of wing sweep on cloud-droplet trajectories about swept wings of high aspect ratio moving at subsonic speeds is discussed. A method of computing droplet trajectories about yawed cylinders and swept wings is presented, and illustrative droplet trajectories are computed. A method of extending two-dimensional calculations of droplet impingement on nonswept wings to swept wings is presented. It is shown that the extent of impingement of cloud droplets on an airfoil surface, the total rate of collection of water, and the local rate of impingement per unit area of airfoil surface can be found for a swept wing from two-dimensional data for a nonswept wing. The impingement on a swept wing is obtained from impingement data for a nonswept airfoil section which is the same as the section in the normal plane of the swept wing by calculating all dimensionless parameters with respect to flow conditions in the normal plane of the swept wing

    Local heat-transfer coefficients for condensation of steam in vertical downflow within a 5/8-inch-diameter tube

    Get PDF
    Heat transfer coefficients of steam condensation in vertical downflow with liquid-vapor interface inside small tube-type condense

    True Airspeed Measurement by Ionization-Tracer Technique

    Get PDF
    Ion bundles produced in a pulse-excited corona discharge are used as tracers with a radar-like pulse transit-time measuring instrument in order to provide a measurement of airspeed that is independent of all variables except time and distance. The resulting instrumentation need not project into the air stream and, therefore, will not cause any interference in supersonic flow. The instrument was tested at Mach numbers ranging from 0.3 to 3.8. Use of the proper instrumentation and technique results in accuracy of the order of 1 percent

    Impingement of Water Droplets on a Sphere

    Get PDF
    Droplet trajectories about a sphere in ideal fluid flow were calculated. From the calculated droplet trajectories the droplet impingement characteristics of the sphere were determined. Impingement data and equations for determining the collection efficiency, the area, and the distribution of impingement are presented in terms of dimensionless parameters. The range of flight and atmospheric conditions covered in the calculations was extended considerably beyond the range covered by previously reported calculations for the sphere
    corecore