1,175 research outputs found
Kinetics of Surfactant Adsorption at Fluid-Fluid Interfaces: Surfactant Mixtures
The adsorption at the interface between an aqueous solution of several
surface-active agents and another fluid (air or oil) phase is addressed
theoretically. We derive the kinetic equations from a variation of the
interfacial free energy, solve them numerically and provide an analytic
solution for the simple case of a linear adsorption isotherm. Calculating
asymptotic solutions analytically, we find the characteristic time scales of
the adsorption process and observe the behavior of the system at various
temporal stages. In particular, we relate the kinetic behavior of the mixture
to the properties of its individual constituents and find good agreement with
experiments. In the case of kinetically limited adsorption, the mixture
kinetics is found to be considerably different from that of the
single-surfactant solutions because of strong coupling between the species.Comment: 19 pages, 7 figures, to be published in Langmui
Swelling of particle-encapsulating random manifolds
We study the statistical mechanics of a closed random manifold of fixed area
and fluctuating volume, encapsulating a fixed number of noninteracting
particles. Scaling analysis yields a unified description of such swollen
manifolds, according to which the mean volume gradually increases with particle
number, following a single scaling law. This is markedly different from the
swelling under fixed pressure difference, where certain models exhibit
criticality. We thereby indicate when the swelling due to encapsulated
particles is thermodynamically inequivalent to that caused by fixed pressure.
The general predictions are supported by Monte Carlo simulations of two
particle-encapsulating model systems -- a two-dimensional self-avoiding ring
and a three-dimensional self-avoiding fluid vesicle. In the former the
particle-induced swelling is thermodynamically equivalent to the
pressure-induced one whereas in the latter it is not.Comment: 8 pages, 6 figure
Nanoscale surface relaxation of a membrane stack
Recent measurements of the short-wavelength (~ 1--100 nm) fluctuations in
stacks of lipid membranes have revealed two distinct relaxations: a fast one
(decay rate of ~ 0.1 ns^{-1}), which fits the known baroclinic mode of bulk
lamellar phases, and a slower one (~ 1--10 \mu s^{-1}) of unknown origin. We
show that the latter is accounted for by an overdamped capillary mode,
depending on the surface tension of the stack and its anisotropic viscosity. We
thereby demonstrate how the dynamic surface tension of membrane stacks could be
extracted from such measurements.Comment: 4 page
Stability of Quasicrystals Composed of Soft Isotropic Particles
Quasicrystals whose building blocks are of mesoscopic rather than atomic
scale have recently been discovered in several soft-matter systems. Contrary to
metallurgic quasicrystals whose source of stability remains a question of great
debate to this day, we argue that the stability of certain soft-matter
quasicrystals can be directly explained by examining a coarse-grained free
energy for a system of soft isotropic particles. We show, both theoretically
and numerically, that the stability can be attributed to the existence of two
natural length scales in the pair potential, combined with effective three-body
interactions arising from entropy. Our newly gained understanding of the
stability of soft quasicrystals allows us to point at their region of stability
in the phase diagram, and thereby may help control the self-assembly of
quasicrystals and a variety of other desired structures in future experimental
realizations.Comment: Revised abstract, more detailed explanations, and better images of
the numerical minimization of the free energ
Mating rituals of the Spotted Turtle
This is where the abstract of this record would appear. This is only demonstration data
Correlated particle dynamics in concentrated quasi-two-dimensional suspensions
We investigate theoretically and experimentally how the hydrodynamically
correlated lateral motion of particles in a suspension confined between two
surfaces is affected by the suspension concentration. Despite the long range of
the correlations (decaying as 1/r^2 with the inter-particle distance r), the
concentration effect is present only at short inter-particle distances for
which the static pair correlation is nonuniform. This is in sharp contrast with
the effect of hydrodynamic screening present in unconfined suspensions, where
increasing the concentration changes the prefactor of the large-distance
correlation.Comment: 13 page
Recommended from our members
The structure of the cytoplasmic dynein tail
Cytoplasmic dynein is a molecular motor that moves cargos along microtubules. Dynein, together with its large co-factor dynactin, is responsible for the vast majority of traffic towards the centre of the cell. The largest subunit of the dynein complex is called the dynein heavy chain (DHC). The DHC includes a C-terminal motor domain, which converts ATP hydrolysis into mechanical force, an N-terminal tail domain, and a flexible linker domain to join the two together. An intermediate chain (DIC) and light intermediate chain (DLIC) bind directly to the DHC tail, while light chains (DLCs) bind to the DIC. This tail complex is important for both cargo binding as well as homodimerisation of the DHC, which is necessary for processive movement. Previous studies suggest that the DLCs play an important role in homodimerisation, but it remains unclear how else the DHCs are held together.
Using S. cerevisiae as a model system, I co-expressed all four dynein subunits and purified functional dynein motors. In this background, I found that truncating the DHC to include only the first 1004 residues (out of the total 4092) eliminates the motor domain as well as the flexible linker domain, while preserving binding to the DIC, DLIC and DLC. However, truncating just another 50 residues off of the C-terminus led to a loss of all accessory subunits. I developed a protocol for expressing and purifying large quantities of the 1004 residue construct, thus I provide the first description of a recombinant dynein tail domain. Using negative stain electron microscopy (EM), I also present the first 3D structural information for the tail region of the cytoplasmic dynein motor.
I then describe a construct including only the first 557 residues of the DHC, which dimerises despite not being able to bind any of the other subunits. I present a crystal structure of this smaller DHC fragment, which shows that the N-terminal 180 residues of the DHC constitute an intricate dimerisation domain made up of a β-sheet sandwiched between α-helices. Not only is this the first crystal structure of any part of the DHC N-terminus, but it reveals a previously undocumented dimerisation domain within the DHC itself. Furthermore, information garnered from this crystal structure allowed for interpretation of a recent cryo-EM structure of a triple complex containing the dynein tail, dynactin and the cargo adaptor BICD2 (TDB) that was solved by my colleagues in the Carter group. Only by docking the DHC N-terminus crystal structure within the TDB EM density did it become clear that the N-terminus of the DHC is responsible for the majority of the contacts the dynein tail makes with both dynactin and BICD2.
Therefore the work that I present here sheds new light on the unexpected importance of the DHC N-terminus and allows two important conclusions to be made. First, the N-terminal 180 residues of the DHC constitute a dimerisation domain of its own. Second, the next ~400 residues of the DHC form a domain that plays a key role in the complex interface between dynein, dynactin and BICD2.This work was funded by the Medical Research Council, UK (grant number MC_UP_A025_1011) and the Cambridge Overseas Trust, UK
Light Rail Transit Surface Operations: Technical Appendix, Trip Reports
This appendix to the report, Light Rail Transit: Surface Operations, contains unedited trip reports prepared in 1977 covering visits in 1976 to cities in Sweden, Holland, Switzerland and west Germany by Dr. E. s. Diamant; to Holland, Belgium, Italy, Yugoslavia and West Germany by Dr. v. R. Vuchic; and to cities in North America. by Messieurs H. Carve, R. Sauve and G. Fox, to carry out investigations and gain understanding of the fundamental design and operation practices of light rail transportation systems. These trip reports are published at this time to supplement the report Light Rail Transit: Surface Operations
- …