16 research outputs found

    Contributions The Response of Circular Cylinders to Vortex Shedding

    No full text

    Structural changes and biological responsiveness of an injectable and mouldable monetite bone graft generated by a facile synthetic method

    Get PDF
    Brushite (dicalcium phosphate dihydrate) and monetite (dicalcium phosphate anhydrous) are of considerable interest in bone augmentation owing to their metastable nature in physiological fluids. The anhydrous form of brushite, namely monetite, has a finer microstructure with higher surface area, strength and bioresorbability, which does not transform to the poorly resorbable hydroxyapatite, thus making it a viable alternative for use as a scaffold for engineering of bone tissue. We recently reported the formation of monetite cements by a simple processing route without the need of hydrothermal treatment by using a high concentration of sodium chloride in the reaction mix of β-tricalcium phosphate and monocalcium phosphate monohydrate. In this paper, we report the biological responsiveness of monetite formed by this method. The in vitro behaviour of monetite after interaction and ageing both in an acellular and cellular environment showed that the crystalline phase of monetite was retained over three weeks as evidenced from X-ray diffraction measurements. The crystal size and morphology also remained unaltered after ageing in different media. Human osteoblast cells seeded on monetite showed the ability of the cells to proliferate and express genes associated with osteoblast maturation and mineralization. Furthermore, the results showed that monetite could stimulate osteoblasts to undergo osteogenesis and accelerate osteoblast maturation earlier than cells cultured on hydroxyapatite scaffolds of similar porosity. Osteoblasts cultured on monetite cement also showed higher expression of osteocalcin, which is an indicator of the maturation stages of osteoblastogenesis and is associated with matrix mineralization and bone forming activity of osteoblasts. Thus, this new method of fabricating porous monetite can be safely used for generating three-dimensional bone graft constructs

    New acrylic bone cements conjugated to vitamin E: Curing parameters, properties, and biocompatibility

    Get PDF
    Acrylic bone cement formulations with antioxidant character were prepared by incorporation of a methacrylic monomer derived from vitamin E (MVE). Increasing concentrations of this monomer provided decreasing peak temperature values, ranging from 62 to 36°C, and increasing setting time with values between 17 and 25 min. Mechanical properties were evaluated by compression and tension tests. Compressive strength of the new formulations were superior to 70 MPa in all cases. The cement containing 25 wt % MVE, however, showed a significant decrease in tensile properties. Biocompatibility of the new formulations was studied in vitro. The analysis of the effect of leachables from cements into the media showed continued cell proliferation and cell viability with a significant increase for the cement containing 15 wt % MVE. This formulation also showed a significant increase in cellular proliferation over a period of 7 days as indicated by the Alamar Blue test. The cells were able to differentiate and express phenotypical markers in presence of all materials. A significant increase in alkaline phosphatase activity was observed on the cements prepared in presence of 15–25 wt % MVE compared with PMMA. Morphological assessment showed that the human osteoblast (HOB) cells were able to adhere, retain their morphology, and proliferate on all the cementsThe authors thank the help provided by M. Kayser, N. Gurav, C. Clifford, B. Annaz, M. Knight, and D. de Silva in the fulfilment of this work (Institute of Orthopaedics, United Kingdom). Financial support from the Comision Intermisterial de Cienca y Tecnologia, CICYT (MAT99-1064-CO2-01) is also gratefully acknowledged.Peer reviewe

    Solution Structure of CCL19 and Identification of Overlapping CCR7 and PSGL-1 Binding Sites

    No full text
    CCL19 and CCL21 are chemokines involved in the trafficking of immune cells, particularly within the lymphatic system, through activation of CCR7. Concurrent expression of PSGL-1 and CCR7 in naive T-cells enhances recruitment of these cells to secondary lymphoid organs by CCL19 and CCL21. Here the solution structure of CCL19 is reported. It contains a canonical chemokine domain. Chemical shift mapping shows the N-termini of PSGL-1 and CCR7 have overlapping binding sites for CCL19 and binding is competitive. Implications for the mechanism of PSGL-1’s enhancement of resting T-cell recruitment are discussed
    corecore