70 research outputs found

    ER Stress Responses: An Emerging Modulator for Innate Immunity.

    Get PDF
    The endoplasmic reticulum (ER) is a critical organelle, storing the majority of calcium and governing protein translation. Thus, it is crucial to keep the homeostasis in all ER components and machineries. The ER stress sensor pathways, including IRE1/sXBP1, PERK/EIf2 and ATF6, orchestrate the major regulatory circuits to ensure ER homeostasis. The embryonic or postnatal lethality that occurs upon genetic depletion of these sensors reveals the essential role of the ER stress pathway in cell biology. In contrast, the impairment or excessive activation of ER stress has been reported to cause or aggravate several diseases such as atherosclerosis, diabetes, NAFDL/NASH, obesity and cancer. Being part of innate immunity, myeloid cells are the first immune cells entering the inflammation site. Upon entry into a metabolically stressed disease environment, activation of ER stress occurs within the myeloid compartment, leading to the modulation of their phenotype and functions. In this review, we discuss causes and consequences of ER stress activation in the myeloid compartment with a special focus on the crosstalk between ER, innate signaling and metabolic environments

    Woven bone formation and mineralization by rat mesenchymal stromal cells imply increased expression of the intermediate filament desmin

    Get PDF
    BACKGROUND: Disordered and hypomineralized woven bone formation by dysfunctional mesenchymal stromal cells (MSCs) characterize delayed fracture healing and endocrine –metabolic bone disorders like fibrous dysplasia and Paget disease of bone. To shed light on molecular players in osteoblast differentiation, woven bone formation, and mineralization by MSCs we looked at the intermediate filament desmin (DES) during the skeletogenic commitment of rat bone marrow MSCs (rBMSCs), where its bone-related action remains elusive. RESULTS: Monolayer cultures of immunophenotypically- and morphologically - characterized, adult male rBMSCs showed co-localization of desmin (DES) with vimentin, F-actin, and runx2 in all cell morphotypes, each contributing to sparse and dense colonies. Proteomic analysis of these cells revealed a topologically-relevant interactome, focused on cytoskeletal and related enzymes//chaperone/signalling molecules linking DES to runx2 and alkaline phosphatase (ALP). Osteogenic differentiation led to mineralized woven bone nodules confined to dense colonies, significantly smaller and more circular with respect to controls. It significantly increased also colony-forming efficiency and the number of DES-immunoreactive dense colonies, and immunostaining of co-localized DES/runx-2 and DES/ALP. These data confirmed pre-osteoblastic and osteoblastic differentiation, woven bone formation, and mineralization, supporting DES as a player in the molecular pathway leading to the osteogenic fate of rBMSCs. CONCLUSION: Immunocytochemical and morphometric studies coupled with proteomic and bioinformatic analysis support the concept that DES may act as an upstream signal for the skeletogenic commitment of rBMSCs. Thus, we suggest that altered metabolism of osteoblasts, woven bone, and mineralization by dysfunctional BMSCs might early be revealed by changes in DES expression//levels. Non-union fractures and endocrine – metabolic bone disorders like fibrous dysplasia and Paget disease of bone might take advantage of this molecular evidence for their early diagnosis and follow-up

    A Smart Motor Rehabilitation System Based on the Internet of Things and Humanoid Robotics

    Get PDF
    The Internet of Things (IoT) is gaining increasing attention in healthcare due to its potential to enable continuous monitoring of patients, both at home and in controlled medical environments. In this paper, we explore the integration of IoT with human-robotics in the context of motor rehabilitation for groups of patients performing moderate physical routines, focused on balance, stretching, and posture. Specifically, we propose the I-TROPHYTS framework, which introduces a step-change in motor rehabilitation by advancing towards more sustainable medical services and personalized diagnostics. Our framework leverages wearable sensors to monitor patients’ vital signs and edge computing to detect and estimate motor routines. In addition, it incorporates a humanoid robot that mimics the actions of a physiotherapist, adapting motor routines in real-time based on the patient’s condition. All data from physiotherapy sessions are modeled using an ontology, enabling automatic reasoning and planning of robot actions. In this paper, we present the architecture of the proposed framework, which spans four layers, and discuss its enabling components. Furthermore, we detail the current deployment of the IoT system for patient monitoring and automatic identification of motor routines via Machine Learning techniques. Our experimental results, collected from a group of volunteers performing balance and stretching exercises, demonstrate that we can achieve nearly 100% accuracy in distinguishing between shoulder abduction and shoulder flexion, using Inertial Measurement Unit data from wearable IoT devices placed on the wrist and elbow of the test subjects

    Changing Epidemiology of Extended-Spectrum β-Lactamases in Argentina: Emergence of CTX-M-15

    Get PDF
    A multicenter survey, carried out in 2010 in Argentina, showed an increased prevalence of extended-spectrum p-lactamase (ESBL)-producing enterobacteria, with some changes in the molecular epidemiology of circulating ESBLs. While enzymes of the CTX-M-2 group remain endemic, the emergence of CTX-M-15 and of enzymes of the CTX-M-8 and CTX-M-9 groups was observed. The CTX-M-15-positive isolates represented 40% of CTX-M producers and included representatives of Escherichia coli ST131 and Klebsiella pneumoniae ST11.Fil: Sennati, S.. Università degli Studi di Siena; ItaliaFil: Santella, G.. Universidad de Buenos Aires. Facultad de Farmacia y Bioquímica. Departamento de Microbiología, Inmunología y Biotecnología. Cátedra de Microbiología; ArgentinaFil: Di Conza, José Alejandro. Universidad de Buenos Aires. Facultad de Farmacia y Bioquímica. Departamento de Microbiología, Inmunología y Biotecnología. Cátedra de Microbiología; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Houssay; ArgentinaFil: Pallecchi, L.. Università degli Studi di Siena; ItaliaFil: Pino, Marylú. Universidad de Buenos Aires. Facultad de Farmacia y Bioquímica. Departamento de Microbiología, Inmunología y Biotecnología. Cátedra de Microbiología; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Houssay; ArgentinaFil: Ghiglione, Barbara. Universidad de Buenos Aires. Facultad de Farmacia y Bioquímica. Departamento de Microbiología, Inmunología y Biotecnología. Cátedra de Microbiología; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Houssay; ArgentinaFil: Rossolini, G.M.. Università degli Studi di Siena; ItaliaFil: Radice, Marcela Alejandra. Universidad de Buenos Aires. Facultad de Farmacia y Bioquímica. Departamento de Microbiología, Inmunología y Biotecnología. Cátedra de Microbiología; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Houssay; ArgentinaFil: Gutkind, Gabriel Osvaldo. Universidad de Buenos Aires. Facultad de Farmacia y Bioquímica. Departamento de Microbiología, Inmunología y Biotecnología. Cátedra de Microbiología; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Houssay; Argentin

    GRP78 Mediates Cell Growth and Invasiveness in Endometrial Cancer.

    Get PDF
    Abstract Recent studies have indicated that endoplasmic reticulum stress, the unfolded protein response activation and altered GRP78 expression can play an important role in a variety of tumors development and progression. Very recently we reported for the first time that GRP78 is increased in endometrial tumors. However, whether GRP78 could play a role in the growth and/or invasiveness of endometrial cancer cells is still unknown. Here we report that the silencing of GRP78 expression affects both cell growth and invasiveness of Ishikawa and AN3CA cells, analyzed by the (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide) and transwell migration assay, respectively. At variance with Ishikawa cells, AN3CA cells showed, besides an endoplasmic reticulum, also a plasma membrane GRP78 localization, evidenced by both immunofluorescence and cell membrane biotinylation experiments. Intriguingly, flow cytometry experiments showed that the treatment with a specific antibody targeting GRP78 C-terminal domain caused apoptosis in AN3CA but not in Ishikawa cells. Induction of apoptosis in AN3CA cells was not mediated by the p53 pathway activation but was rather associated to reduced AKT phosphorylation. Interestingly, immunofluorescence analysis evidenced that endometrioid adenocarcinoma tissues displayed, similarly to AN3CA cells, also a GRP78 plasma membrane localization. These data suggest that GRP78 and its plasma membrane localization, might play a role in endometrial cancer development and progression and might constitute a novel target for the treatment of endometrial cancer

    The Pervasive Effects of ER Stress on a Typical Endocrine Cell: Dedifferentiation, Mesenchymal Shift and Antioxidant Response in the Thyrocyte

    Get PDF
    none13noThe endoplasmic reticulum stress and the unfolded protein response are triggered following an imbalance between protein load and protein folding. Until recently, two possible outcomes of the unfolded protein response have been considered: life or death. We sought to substantiate a third alternative, dedifferentiation, mesenchymal shift, and activation of the antioxidant response by using typical endocrine cells, i.e. thyroid cells. The thyroid is a unique system both of endoplasmic reticulum stress (a single protein, thyroglobulin represents the majority of proteins synthesized in the endoplasmic reticulum by the thyrocyte) and of polarized epithelium (the single layer of thyrocytes delimiting the follicle). Following endoplasmic reticulum stress, in thyroid cells the folding of thyroglobulin was disrupted. The mRNAs of unfolded protein response were induced or spliced (X-box binding protein-1). Differentiation was inhibited: mRNA levels of thyroid specific genes, and of thyroid transcription factors were dramatically downregulated, at least in part, transcriptionally. The dedifferentiating response was accompanied by an upregulation of mRNAs of antioxidant genes. Moreover, cadherin-1, and the thyroid (and kidney)-specific cadherin-16 mRNAs were downregulated, vimentin, and SNAI1 mRNAs were upregulated. In addition, loss of cortical actin and stress fibers formation were observed. Together, these data indicate that ER stress in thyroid cells induces dedifferentiation, loss of epithelial organization, shift towards a mesenchymal phenotype, and activation of the antioxidant response, highlighting, at the same time, a new and wide strategy to achieve survival following ER stress, and, as a sort of the other side of the coin, a possible new molecular mechanism of decline/loss of function leading to a deficit of thyroid hormones formation.openUlianich L.; Mirra P.; Garbi C.; Cali G.; Conza D.; Treglia A.S.; Miraglia A.; Punzi D.; Miele C.; Raciti G.A.; Beguinot F.; Consiglio E.; Di Jeso B.Ulianich, L.; Mirra, P.; Garbi, C.; Cali, G.; Conza, D.; Treglia, A. S.; Miraglia, A.; Punzi, D.; Miele, C.; Raciti, G. A.; Beguinot, F.; Consiglio, E.; Di Jeso, B

    The masks of Lorenzo Tenchini : their anatomy and surgical/bioengineering clues

    Get PDF
    An academic, anatomist, and Lombrosian psychiatrist active at the University of Parma in Italy at the end of the 19th century, Lorenzo Tenchini produced ceroplastic-like masks that are unique in the anatomical Western context. These were prepared from 1885 to 1893 with the aim of 'cataloguing' the behaviour of prison inmates and psychiatric patients based on their facial surface anatomy. Due to the lack of any reference to the procedure used to prepare the masks, studies were undertaken by our group using X-ray scans, infrared spectroscopy, bioptic sampling, and microscopy analysis of the mask constituents. Results showed that the masks were stratified structures including plaster, cotton gauze/human epidermis, and wax, leading to a fabrication procedure reminiscent of 'additive layer manufacturing'. Differences in the depths of these layers were observed in relation to the facial contours, suggesting an attempt to reproduce, at least partially, the three-dimensional features of the facial soft tissues. We conclude the Tenchini masks are the first historical antecedent of the experimental method for face reconstruction used in the early 2000s to test the feasibility of transferring a complete strip of face and scalp from a deceased donor to a living recipient, in preparation for a complete face transplant. In addition, the layering procedure adopted conceptually mimics that developed only in the late 20th century for computer-aided rapid prototyping, and recently applied to bioengineering with biomaterials for a number of human structures including parts of the skull and face. Finally, the masks are a relevant example of mixed ceroplastic-cutaneous preparations in the history of anatomical research for clinical purposes

    A CSF-1R-blocking antibody/IL-10 fusion protein increases anti-tumor immunity by effectuating tumor-resident CD8<sup>+</sup> T cells.

    Get PDF
    Strategies to increase intratumoral concentrations of an anticancer agent are desirable to optimize its therapeutic potential when said agent is efficacious primarily within a tumor but also have significant systemic side effects. Here, we generate a bifunctional protein by fusing interleukin-10 (IL-10) to a colony-stimulating factor-1 receptor (CSF-1R)-blocking antibody. The fusion protein demonstrates significant antitumor activity in multiple cancer models, especially head and neck cancer. Moreover, this bifunctional protein not only leads to the anticipated reduction in tumor-associated macrophages but also triggers proliferation, activation, and metabolic reprogramming of CD8 &lt;sup&gt;+&lt;/sup&gt; T cells. Furthermore, it extends the clonotype diversity of tumor-infiltrated T cells and shifts the tumor microenvironment (TME) to an immune-active state. This study suggests an efficient strategy for designing immunotherapeutic agents by fusing a potent immunostimulatory molecule to an antibody targeting TME-enriched factors

    Prolyl Hydroxylase Substrate Adenylosuccinate Lyase Is An Oncogenic Driver In Triple Negative Breast Cancer

    Get PDF
    Protein hydroxylation affects protein stability, activity, and interactome, therefore contributing to various diseases including cancers. However, the transiency of the hydroxylation reaction hinders the identification of hydroxylase substrates. By developing an enzyme-substrate trapping strategy coupled with TAP-TAG or orthogonal GST- purification followed by mass spectrometry, we identify adenylosuccinate lyase (ADSL) as an EglN2 hydroxylase substrate in triple negative breast cancer (TNBC). ADSL expression is higher in TNBC than other breast cancer subtypes or normal breast tissues. ADSL knockout impairs TNBC cell proliferation and invasiveness in vitro and in vivo. An integrated transcriptomics and metabolomics analysis reveals that ADSL activates the oncogenic cMYC pathway by regulating cMYC protein level via a mechanism requiring ADSL proline 24 hydroxylation. Hydroxylation-proficient ADSL, by affecting adenosine levels, represses the expression of the long non-coding RNA MIR22HG, thus upregulating cMYC protein level. Our findings highlight the role of ADSL hydroxylation in controlling cMYC and TNBC tumorigenesis
    corecore