780 research outputs found

    Parametric Excitation of a Bose-Einstein Condensate: From Faraday Waves to Granulation

    Get PDF
    We explore, both experimentally and theoretically, the response of an elongated Bose-Einstein condensate to modulated interactions. We identify two distinct regimes differing in modulation frequency and modulation strength. Longitudinal surface waves are generated either resonantly or parametrically for modulation frequencies near the radial trap frequency or twice the trap frequency, respectively. The dispersion of these waves, the latter being a Faraday wave, is well-reproduced by a mean-field theory that accounts for the 3D nature of the elongated condensate. In contrast, in the regime of lower modulation frequencies we find that no clear resonances occur, but with increased modulation strength, the condensate forms an irregular granulated distribution that is outside the scope of a mean-field approach. We find that the granulated condensate is characterized by large quantum fluctuations and correlations, which are well-described with single-shot simulations obtained from wavefunctions computed by a beyond mean-field theory at zero temperature, the multiconfigurational time-dependent Hartree for bosons method.Comment: To be published in PRX (2019

    Stellar Populations Found in the Central kpc of Four Luminous Compact Blue Galaxies at Intermediate Redshift

    Full text link
    We investigate the star formation history of the central regions of four Luminous Compact Blue Galaxies (LCBGs). LCBGs are blue (B-V<0.6), compact (MU_B<21.5 mag arcsec^-2) galaxies with absolute magnitudes M_B brighter than -17.5. The LCBGs analyzed here are located at 0.436<z<0.525. They are among the most luminous (M_B < -20.5), blue (B-V < 0.4) and high surface brightness (MU_B < 19.0 mag arcsec^-2) of this population. The observational data used were obtained with the HST/STIS spectrograph, the HST/WF/PC-2 camera and the HST/NICMOS first camera. We find evidence for multiple stellar populations. One of them is identified as the ionizing population, and the other one corresponds to the underlying stellar generation. The estimated masses of the inferred populations are compatible with the dynamical masses, which are typically 2--10x 10^9 M_sun. Our models also indicate that the first episodes of star formation the presented LCBGs underwent happened between 5 and 7 Gyr ago. We compare the stellar populations found in LCBGs with the stellar populations present in bright, local HII galaxies, nearby spheroidal systems and Blue Compact Dwarf Galaxies. It turns out that the underlying stellar populations of LCBGs are similar yet bluer to those of local HII galaxies. It is also the case that the passive color evolution of the LCBGs could convert them into local Spheroidal galaxies if no further episode of star formation takes place. Our results help to impose constraints on evolutionary scenarios for the population of LCBGs found commonly at intermediate redshifts.Comment: 35 pages, 10 Figures. Accepted for publication in AJ. Compile with pdflatex. Contains png figure

    Emission-Line Galaxy Surveys as Probes of the Spatial Distribution of Dwarf Galaxies. I. The University of Michigan Survey

    Full text link
    Objective-prism surveys which select galaxies on the basis of line-emission are extremely effective at detecting low-luminosity galaxies and constitute some of the deepest available samples of dwarfs. In this study, we confirm that emission-line galaxies (ELGs) in the University of Michigan (UM) objective-prism survey (MacAlpine et al. 1977-1981) are reliable tracers of large-scale structure, and utilize the depth of the samples to examine the spatial distribution of low-luminosity (MB>_{B} > -18.0) dwarfs relative to higher luminosity giant galaxies (MB_{B} \leq -18.0) in the Updated Zwicky Catalogue (Falco et al. 1999). New spectroscopic data are presented for 26 UM survey objects. We analyze the relative clustering properties of the overall starbursting ELG and normal galaxy populations, using nearest neighbor and correlation function statistics. This allows us to determine whether the activity in ELGs is primarily caused by gravitational interactions. We conclude that galaxy-galaxy encounters are not the sole cause of activity in ELGs since ELGs tend to be more isolated and are more often found in the voids when compared to their normal galaxy counterparts. Furthermore, statistical analyses performed on low-luminosity dwarf ELGs show that the dwarfs are less clustered when compared to their non-active giant neighbors. The UM dwarf samples have greater percentages of nearest neighbor separations at large values and lower correlation function amplitudes relative to the UZC giant galaxy samples. These results are consistent with the expectations of galaxy biasing.Comment: 17 pages, 4 tables, 10 figures. Accepted for publication in the Ap

    On the Maximum Luminosity of Galaxies and Their Central Black Holes: Feedback From Momentum-Driven Winds

    Full text link
    We investigate large-scale galactic winds driven by momentum deposition. Momentum injection is provided by (1) radiation pressure produced by the continuum absorption and scattering of UV photons on dust grains and (2) supernovae. UV radiation can be produced by a starburst or AGN activity. We argue that momentum-driven winds are an efficient mechanism for feedback during the formation of galaxies. We show that above a limiting luminosity, momentum deposition from star formation can expel a significant fraction of the gas in a galaxy. The limiting, Eddington-like luminosity is LM(4fgc/G)σ4L_{\rm M}\simeq(4f_g c/G) \sigma^4, where σ\sigma is the galaxy velocity dispersion and fgf_g is the gas fraction. A starburst that attains LML_{\rm M} moderates its star formation rate and its luminosity does not increase significantly further. We argue that ellipticals attain this limit during their growth at z1z \gtrsim 1 and that this is the origin of the Faber-Jackson relation. We show that Lyman break galaxies and ultra-luminous infrared galaxies have luminosities near LML_{\rm M}. Star formation is unlikely to efficiently remove gas from very small scales in galactic nuclei, i.e., scales much smaller than that of a nuclear starburst. This gas is available to fuel a central black hole (BH). We argue that a BH clears gas out of its galactic nucleus when the luminosity of the BH itself reaches LM\approx L_{\rm M}. This shuts off the fuel supply to the BH and may also terminate star formation in the surrounding galaxy. As a result, the BH mass is fixed to be MBH(fgκes/πG2)σ4M_{\rm BH}\simeq (f_g \kappa_{\rm es}/\pi G^2)\sigma^4, where κes\kappa_{\rm es} is the electron scattering opacity. This limit is in accord with the observed MBHσM_{\rm BH}-\sigma relation. (Abridged)Comment: 21 pages, emulateapj, accepted to ApJ, minor changes to discussio

    Chemical Properties of Star-Forming Emission Line Galaxies at z=0.1 - 0.5

    Full text link
    We measure oxygen and nitrogen abundances for 14 star-forming emission line galaxies (ELGs) at 0.11<z<0.5 using Keck/LRIS optical spectroscopy. The targets exhibit a range of metallicities from slightly metal-poor like the LMC to super-solar. Oxygen abundances of the sample correlate strongly with rest-frame blue luminosities. The metallicity-luminosity relation based on these 14 objects is indistinguishable from the one obeyed by local galaxies, although there is marginal evidence (1.1sigma) that the sample is slightly more metal-deficient than local galaxies of the same luminosity. The observed galaxies exhibit smaller emission linewidths than local galaxies of similar metallicity, but proper corrections for inclination angle and other systematic effects are unknown. For 8 of the 14 objects we measure nitrogen-to-oxygen ratios. Seven of 8 systems show evidence for secondary nitrogen production, with log(N/O)> -1.4 like local spirals. These chemical properties are inconsistent with unevolved objects undergoing a first burst of star formation. The majority of the ELGs are presently ~4 magnitudes brighter and ~0.5 dex more metal-rich than the bulk of the stars in well-known metal-poor dwarf spheroidals such as NGC 205 and NGC 185, making an evolution between some ELGs and metal-poor dwarf spheroidals improbable. However, the data are consistent with the hypothesis that more luminous and metal-rich spheroidal galaxies like NGC 3605 may become the evolutionary endpoints of some ELGs. [abridged]Comment: 41 pages, w/12 figures, uses AASTeX aaspp4.sty, psfig.sty; To appear in The Astrophysical Journa

    Out-of-phase oscillation between superfluid and thermal components for a trapped Bose condensate under oscillatory excitation

    Full text link
    The vortex nucleation and the emergence of quantum turbulence induced by oscillating magnetic fields, introduced by Henn E A L, et al. 2009 (Phys. Rev. A 79, 043619) and Henn E A L, et al. 2009 (Phys. Rev. Lett. 103, 045301), left a few open questions concerning the basic mechanisms causing those interesting phenomena. Here, we report the experimental observation of the slosh dynamics of a magnetically trapped 87^{87}Rb Bose-Einstein condensate (BEC) under the influence of a time-varying magnetic field. We observed a clear relative displacement in between the condensed and the thermal fraction center-of-mass. We have identified this relative counter move as an out-of-phase oscillation mode, which is able to produce ripples on the condensed/thermal fractions interface. The out-of-phase mode can be included as a possible mechanism involved in the vortex nucleation and further evolution when excited by time dependent magnetic fields.Comment: 5 pages, 5 figures, 25 reference
    corecore