Abstract

We measure oxygen and nitrogen abundances for 14 star-forming emission line galaxies (ELGs) at 0.11<z<0.5 using Keck/LRIS optical spectroscopy. The targets exhibit a range of metallicities from slightly metal-poor like the LMC to super-solar. Oxygen abundances of the sample correlate strongly with rest-frame blue luminosities. The metallicity-luminosity relation based on these 14 objects is indistinguishable from the one obeyed by local galaxies, although there is marginal evidence (1.1sigma) that the sample is slightly more metal-deficient than local galaxies of the same luminosity. The observed galaxies exhibit smaller emission linewidths than local galaxies of similar metallicity, but proper corrections for inclination angle and other systematic effects are unknown. For 8 of the 14 objects we measure nitrogen-to-oxygen ratios. Seven of 8 systems show evidence for secondary nitrogen production, with log(N/O)> -1.4 like local spirals. These chemical properties are inconsistent with unevolved objects undergoing a first burst of star formation. The majority of the ELGs are presently ~4 magnitudes brighter and ~0.5 dex more metal-rich than the bulk of the stars in well-known metal-poor dwarf spheroidals such as NGC 205 and NGC 185, making an evolution between some ELGs and metal-poor dwarf spheroidals improbable. However, the data are consistent with the hypothesis that more luminous and metal-rich spheroidal galaxies like NGC 3605 may become the evolutionary endpoints of some ELGs. [abridged]Comment: 41 pages, w/12 figures, uses AASTeX aaspp4.sty, psfig.sty; To appear in The Astrophysical Journa

    Similar works

    Full text

    thumbnail-image

    Available Versions

    Last time updated on 05/06/2019