We measure oxygen and nitrogen abundances for 14 star-forming emission line
galaxies (ELGs) at 0.11<z<0.5 using Keck/LRIS optical spectroscopy. The targets
exhibit a range of metallicities from slightly metal-poor like the LMC to
super-solar. Oxygen abundances of the sample correlate strongly with rest-frame
blue luminosities. The metallicity-luminosity relation based on these 14
objects is indistinguishable from the one obeyed by local galaxies, although
there is marginal evidence (1.1sigma) that the sample is slightly more
metal-deficient than local galaxies of the same luminosity. The observed
galaxies exhibit smaller emission linewidths than local galaxies of similar
metallicity, but proper corrections for inclination angle and other systematic
effects are unknown. For 8 of the 14 objects we measure nitrogen-to-oxygen
ratios. Seven of 8 systems show evidence for secondary nitrogen production,
with log(N/O)> -1.4 like local spirals. These chemical properties are
inconsistent with unevolved objects undergoing a first burst of star formation.
The majority of the ELGs are presently ~4 magnitudes brighter and ~0.5 dex more
metal-rich than the bulk of the stars in well-known metal-poor dwarf
spheroidals such as NGC 205 and NGC 185, making an evolution between some ELGs
and metal-poor dwarf spheroidals improbable. However, the data are consistent
with the hypothesis that more luminous and metal-rich spheroidal galaxies like
NGC 3605 may become the evolutionary endpoints of some ELGs. [abridged]Comment: 41 pages, w/12 figures, uses AASTeX aaspp4.sty, psfig.sty; To appear
in The Astrophysical Journa