17,360 research outputs found
Jupiter's radiation belts: Can Pioneer 10 survive?
Model calculations of Jupiter's electron and proton radiation belts indicate that the Galilean satellites can reduce particle fluxes in certain regions of the inner magnetosphere by as much as six orders of magnitude. Average fluxes should be reduced by a factor of 100 or more along the Pioneer 10 trajectory through the heart of Jupiter's radiation belts in early December. This may be enough to prevent serious radiation damage to the spacecraft
Absorption of trapped particles by Jupiter's moons
Absorption effects of the four innermost moons in the radial transport equations for electrons and protons in Jupiter's magnetosphere are presented. The phase space density n at 2 R sub J for electrons with equatorial pitch angles less than 69 deg is reduced by a factor of 4.2 x 1000 when lunar absorption is included in the calculation. For protons with equatorial pitch angles less than 69 deg, the corresponding reduction factor is 3.2 x 100000. The effect of the satellites becomes progressively weaker for both electrons and protons as equatorial pitch angles of pi/2 are approached, because the likelihood of impacting a satellite becomes progressively smaller. The large density decreases which we find at the orbits of Io, Europa, and Ganymede result in corresponding particle flux decreases that should be observed by spacecraft making particle measurements in Jupiter's magnetosphere. The characteristic signature of satellite absorption should be a downward pointing cusp in the flux versus radius curve at the L-value corresponding to each satellite
Recommended from our members
Glucocorticoid-regulated localization of cell surface glycoproteins in rat hepatoma cells is mediated within the Golgi complex.
Glucocorticoid hormones regulate the post-translational maturation and sorting of cell surface and extracellular mouse mammary tumor virus (MMTV) glycoproteins in M1.54 cells, a stably infected rat hepatoma cell line. Exposure to monensin significantly reduced the proteolytic maturation and externalization of viral glycoproteins resulting in a stable cellular accumulation of a single 70,000-Mr glycosylated polyprotein (designated gp70). Cell surface- and intracellular-specific immunoprecipitations of monensin-treated cells revealed that gp70 can be localized to the cell surface only in the presence of 1 microM dexamethasone, while in uninduced cells gp70 is irreversibly sequestered in an intracellular compartment. Analysis of oligosaccharide processing kinetics demonstrated that gp70 acquired resistance to endoglycosidase H with a half-time of 65 min in the presence or absence of hormone. In contrast, gp70 was inefficiently galactosylated after a 60-min lag in uninduced cells while rapidly acquiring this carbohydrate modification in the presence of dexamethasone. Furthermore, in the absence or presence of monensin, MMTV glycoproteins failed to be galactosylated in hormone-induced CR4 cells, a complement-selected sorting variant defective in the glucocorticoid-regulated compartmentalization of viral glycoproteins to the cell surface. Since dexamethasone had no apparent global effects on organelle morphology or production of total cell surface-galactosylated species, we conclude that glucocorticoids induce the localization of cell surface MMTV glycoproteins by regulating a highly selective step within the Golgi apparatus after the acquisition of endoglycosidase H-resistant oligosaccharide side chains but before or at the site of galactose attachment
Star-shaped Local Density of States around Vortices in a Type II Superconductor
The electronic structure of vortices in a type II superconductor is analyzed
within the quasi-classical Eilenberger framework. The possible origin of a
sixfold ``star'' shape of the local density of states, observed by scanning
tunneling microscope experiments on NbSe, is examined in the light of the
three effects; the anisotropic pairing, the vortex lattice, and the anisotropic
density of states at the Fermi surface. Outstanding features of split parallel
rays of this star are well explained in terms of an anisotropic -wave
pairing. This reveals a rich internal electronic structure associated with a
vortex core.Comment: 4 pages, REVTeX, 3 figures available upon reques
A Coupled Map Lattice Model for Rheological Chaos in Sheared Nematic Liquid Crystals
A variety of complex fluids under shear exhibit complex spatio-temporal
behaviour, including what is now termed rheological chaos, at moderate values
of the shear rate. Such chaos associated with rheological response occurs in
regimes where the Reynolds number is very small. It must thus arise as a
consequence of the coupling of the flow to internal structural variables
describing the local state of the fluid. We propose a coupled map lattice (CML)
model for such complex spatio-temporal behaviour in a passively sheared nematic
liquid crystal, using local maps constructed so as to accurately describe the
spatially homogeneous case. Such local maps are coupled diffusively to nearest
and next nearest neighbours to mimic the effects of spatial gradients in the
underlying equations of motion. We investigate the dynamical steady states
obtained as parameters in the map and the strength of the spatial coupling are
varied, studying local temporal properties at a single site as well as
spatio-temporal features of the extended system. Our methods reproduce the full
range of spatio-temporal behaviour seen in earlier one-dimensional studies
based on partial differential equations. We report results for both the one and
two-dimensional cases, showing that spatial coupling favours uniform or
periodically time-varying states, as intuitively expected. We demonstrate and
characterize regimes of spatio-temporal intermittency out of which chaos
develops. Our work suggests that such simplified lattice representations of the
spatio-temporal dynamics of complex fluids under shear may provide useful
insights as well as fast and numerically tractable alternatives to continuum
representations.Comment: 32 pages, single column, 20 figure
Comment on "Exclusion of time in the theorem of Bell" by K. Hess and W. Philipp
A recent Letter by Hess and Philipp claims that Bell's theorem neglects the
possibility of time-like dependence in local hidden variables, hence is not
conclusive. Moreover the authors claim that they have constructed, in an
earlier paper, a local realistic model of the EPR correlations. However, they
themselves have neglected the experimenter's freedom to choose settings, while
on the other hand, Bell's theorem can be formulated to cope with time-like
dependence. This in itself proves that their toy model cannot satisfy local
realism, but we also indicate where their proof of its local realistic nature
fails.Comment: Latex needs epl.cl
An intelligent, free-flying robot
The ground based demonstration of the extensive extravehicular activity (EVA) Retriever, a voice-supervised, intelligent, free flying robot, is designed to evaluate the capability to retrieve objects (astronauts, equipment, and tools) which have accidentally separated from the Space Station. The major objective of the EVA Retriever Project is to design, develop, and evaluate an integrated robotic hardware and on-board software system which autonomously: (1) performs system activation and check-out; (2) searches for and acquires the target; (3) plans and executes a rendezvous while continuously tracking the target; (4) avoids stationary and moving obstacles; (5) reaches for and grapples the target; (6) returns to transfer the object; and (7) returns to base
Scaling behavior of interactions in a modular quantum system and the existence of local temperature
We consider a quantum system of fixed size consisting of a regular chain of
-level subsystems, where is finite. Forming groups of subsystems
each, we show that the strength of interaction between the groups scales with
. As a consequence, if the total system is in a thermal state with
inverse temperature , a sufficient condition for subgroups of size
to be approximately in a thermal state with the same temperature is , where is the width of the occupied
level spectrum of the total system. These scaling properties indicate on what
scale local temperatures may be meaningfully defined as intensive variables.
This question is particularly relevant for non-equilibrium scenarios such as
heat conduction etc.Comment: 7 pages, accepted for publication in Europhysics Letter
Antiferromagnetism and Superconductivity in UPt_3
The short ranged antiferromagnetism recently seen in UPt_3 is proved
incompatible with two dimensional (2D) order parameter models that take the
antiferromagnetism as a symmetry breaking field. To adjust to the local moment
direction, the order parameter twists over very long length scales as per the
Imry-Ma argument. A variational solution to the Ginzburg-Landau equations is
used to study the nature of the short ranged order. Although there are still
two transitions, the lower one is of first order -- in contradiction to
experiments. It is shown that the latent heat predicted by the 2D models at the
lower transition is too large not to have been seen. A simple periodic model is
numerically studied to show that the lower transition can not be a crossover
either.Comment: To appear in Journal of Physics: Condensed Matter. 9 pages, 2 figure
- …
