17,249 research outputs found

    Quantum Bit String Commitment

    Full text link
    A bit string commitment protocol securely commits NN classical bits in such a way that the recipient can extract only M<NM<N bits of information about the string. Classical reasoning might suggest that bit string commitment implies bit commitment and hence, given the Mayers-Lo-Chau theorem, that non-relativistic quantum bit string commitment is impossible. Not so: there exist non-relativistic quantum bit string commitment protocols, with security parameters ϵ\epsilon and MM, that allow AA to commit N=N(M,ϵ)N = N(M, \epsilon) bits to BB so that AA's probability of successfully cheating when revealing any bit and BB's probability of extracting more than N=NMN'=N-M bits of information about the NN bit string before revelation are both less than ϵ\epsilon. With a slightly weakened but still restrictive definition of security against AA, NN can be taken to be O(exp(CN))O(\exp (C N')) for a positive constant CC. I briefly discuss possible applications.Comment: Published version. (Refs updated.

    Study of process technology for GaAlAs/GaAs heteroface solar cells

    Get PDF
    Two processes were considered: the infinite melt process and the finite melt process. The only technique that is developed to the point that 10,000 cells could be produced in one year is the infinite melt liquid phase epitaxy process. The lowest cost per cell was achieved with the advanced metal organic chemical vapor deposition process. Molecular beam epitaxy was limited by the slow growth rate. The lowest cost, an 18 percent efficient cell at air mass zero, was approximately $70 per watt

    A NASA high-power space-based laser research and applications program

    Get PDF
    Applications of high power lasers are discussed which might fulfill the needs of NASA missions, and the technology characteristics of laser research programs are outlined. The status of the NASA programs or lasers, laser receivers, and laser propulsion is discussed, and recommendations are presented for a proposed expanded NASA program in these areas. Program elements that are critical are discussed in detail

    Preliminary design and cost of a 1-megawatt solar-pumped iodide laser space-to-space transmission station

    Get PDF
    A preliminary conceptual design of a space-based solar pumped iodide laser emitting 1 megawatt of laser power for space-to-space power transmission is described. A near parabolic solar collector focuses sunlight onto the t-C4F9I (perfluoro-t butyl iodide) lasant within a transverse flow optical cavity. Using waste heat, a thermal system was designed to supply compressor and auxiliary power. System components were designed with weight and cost estimates assigned. Although cost is very approximate, the cost comparison of individual system components leads to valuable insights for future research. In particular, it was found that laser efficiency was not a dominant cost or weight factor, the dominant factor being the laser cavity and laser transmission optics. The manufacturing cost was approx. two thirds of the total cost with transportation to orbit the remainder. The flowing nonrenewable lasant comprised 20% of the total life cycle cost of the system and thus was not a major cost factor. The station mass was 92,000 kg without lasant, requiring approx. four shuttle flights to low Earth orbit where an orbital transfer vehicle will transport it to the final altitude of 6378 km

    Comparison of electrically driven lasers for space power transmission

    Get PDF
    High-power lasers in space could provide power for a variety of future missions such as spacecraft electric power requirements and laser propulsion. This study investigates four electrically pumped laser systems, all scaled to 1-MW laser output, that could provide power to spacecraft. The four laser systems are krypton fluoride, copper vapor, laser diode array, and carbon dioxide. Each system was powered by a large solar photovoltaic array which, in turn, provided power for the appropriate laser power conditioning subsystem. Each system was block-diagrammed, and the power and efficiency were found for each subsystem block component. The copper vapor system had the lowest system efficiency (6 percent). The CO2 laser was found to be the most readily scalable but has the disadvantage of long laser wavelength

    An extreme ultraviolet spectrometer experiment for the Shuttle Get Away Special Program

    Get PDF
    An extreme ultraviolet (EUV) spectrometer experiment operated successfully during the STS-7 mission in an experiment to measure the global and diurnal variation of the EUV airglow. The spectrometer is an F 3.5 Wadsworth mount with mechanical collimator, a 75 x 75 mm grating, and a bare microchannel plate detector providing a spectral resolution of 7 X FWHM. Read-out of the signal is through discrete channels or resistive anode techniques. The experiment includes a microcomputer, 20 Mbit tape recorder, and a 28V, 40 Ahr silver-zinc battery. It is the first GAS payload to use an opening door. The spectrometer's 0.1 x 4.2 deg field of view is pointed vertically out of the shuttle bay. During the STS-7 flight data were acquired continuously for a period of 5 hours and 37 minutes, providing spectra of the 570 A to 850 A wavelength region of the airglow. Five diurnal cycles of the 584 A emission of neutral helium and the 834 A emission of ionized atomic oxygen were recorded. The experiment also recorded ion events and pressure pulses associated with thruster firings. The experiment is to fly again on Mission 41-F

    Purification and characterization of pre-mRNA splicing factor SF2 from HeLa cells

    Get PDF
    SF2, an activity necessary for 5' splice site cleavage and lariat formation during pre-mRNA splicing in vitro, has been purified to near homogeneity from HeLa cells. The purest fraction contains only two related polypeptides of 33 kD. This fraction is sufficient to complement an S100 fraction, which contains the remaining splicing factors, to splice several pre-mRNAs. The optimal amount of SF2 required for efficient splicing depends on the pre-mRNA substrate. SF2 is distinct from the hnRNP A1 and U1 snRNP a polypeptides, which are similar in size. Endogenous hnRNA copurifies with SF2, but this activity does not appear to have an essential RNA component. SF2 appear to be necessary for the assembly or stabilization of the earliest specific prespliceosome complex, although in the absence of other components, it can bind RNA in a nonspecific manner. SF2 copurifies with an activity that promotes the annealing of complementary RNAs. Thus, SF2 may promote specific RNA-RNA interactions between snRNAs and pre-mRNA, between complementary snRNA regions, and/or involving intramolecular pre-mRNA helices. Other purified proteins with RNA annealing activity cannot substitute for SF2 in the splicing reaction

    Decomposition of time-covariant operations on quantum systems with continuous and/or discrete energy spectrum

    Full text link
    Every completely positive map G that commutes which the Hamiltonian time evolution is an integral or sum over (densely defined) CP-maps G_\sigma where \sigma is the energy that is transferred to or taken from the environment. If the spectrum is non-degenerated each G_\sigma is a dephasing channel followed by an energy shift. The dephasing is given by the Hadamard product of the density operator with a (formally defined) positive operator. The Kraus operator of the energy shift is a partial isometry which defines a translation on R with respect to a non-translation-invariant measure. As an example, I calculate this decomposition explicitly for the rotation invariant gaussian channel on a single mode. I address the question under what conditions a covariant channel destroys superpositions between mutually orthogonal states on the same orbit. For channels which allow mutually orthogonal output states on the same orbit, a lower bound on the quantum capacity is derived using the Fourier transform of the CP-map-valued measure (G_\sigma).Comment: latex, 33 pages, domains of unbounded operators are now explicitly specified. Presentation more detailed. Implementing the shift after the dephasing is sometimes more convenien

    A method for dense packing discovery

    Full text link
    The problem of packing a system of particles as densely as possible is foundational in the field of discrete geometry and is a powerful model in the material and biological sciences. As packing problems retreat from the reach of solution by analytic constructions, the importance of an efficient numerical method for conducting \textit{de novo} (from-scratch) searches for dense packings becomes crucial. In this paper, we use the \textit{divide and concur} framework to develop a general search method for the solution of periodic constraint problems, and we apply it to the discovery of dense periodic packings. An important feature of the method is the integration of the unit cell parameters with the other packing variables in the definition of the configuration space. The method we present led to improvements in the densest-known tetrahedron packing which are reported in [arXiv:0910.5226]. Here, we use the method to reproduce the densest known lattice sphere packings and the best known lattice kissing arrangements in up to 14 and 11 dimensions respectively (the first such numerical evidence for their optimality in some of these dimensions). For non-spherical particles, we report a new dense packing of regular four-dimensional simplices with density ϕ=128/2190.5845\phi=128/219\approx0.5845 and with a similar structure to the densest known tetrahedron packing.Comment: 15 pages, 5 figure
    corecore