141,513 research outputs found
Phonographic neighbors, not orthographic neighbors, determine word naming latencies
The orthographic neighborhood size (N) of a word—the number of words that can be formed from that word by replacing one letter with another in its place—has been found to have facilitatory effects in word naming. The orthographic neighborhood hypothesis attributes this facilitation to interactive effects. A phonographic neighborhood hypothesis, in contrast, attributes the effect to lexical print-sound conversion. According to the phonographic neighborhood hypothesis, phonographic neighbors (words differing in one letter and one phoneme, e.g., stove and stone) should facilitate naming, and other orthographic neighbors (e.g., stove and shove) should not. The predictions of these two hypotheses are tested. Unique facilitatory phonographic N effects were found in four sets of word naming mega-study data, along with an absence of facilitatory orthographic N effects. These results implicate print-sound conversion—based on consistent phonology—in neighborhood effects rather than word-letter feedback
Determination of two-stroke engine exhaust noise by the method of characteristics
A computational technique was developed for the method of characteristics solution of a one-dimensional flow in a duct as applied to the wave action in an engine exhaust system. By using the method, it was possible to compute the unsteady flow in both straight pipe and tuned expansion chamber exhaust systems as matched to the flow from the cylinder of a small two-stroke engine. The radiated exhaust noise was then determined by assuming monopole radiation from the tailpipe outlet. Very good agreement with experiment on an operation engine was achieved in the calculation of both the third octave radiated noise and the associated pressure cycles at several locations in the different exhaust systems. Of particular interest is the significance of nonlinear behavior which results in wave steepening and shock wave formation. The method computes the precise paths on the x-t plane of a finite number of C(sub +), C(sub -) and P characteristics, thereby obtaining high accuracy in determining the tailpipe outlet velocity and the radiated noise
Methods of testing and diagnosing model error : dual and single route cascaded models of reading aloud
Models of visual word recognition have been assessed by both factorial and regression approaches. Factorial approaches tend to provide a relatively weak test of models, and regression approaches give little indication of the sources of models’ mispredictions, especially when parameters are not optimal. A new alternative method, involving regression on model error, combines these two approaches with parameter optimization. The method is illustrated with respect to the dual route cascaded model of reading aloud. In contrast to previous investigations, this method provides clear evidence that there are parameter-independent problems with the model, and identifies two specific sources of misprediction made by model
Modeling lexical decision : the form of frequency and diversity effects
What is the root cause of word frequency effects on lexical decision times? W. S. Murray and K. I. Forster (2004) argued that such effects are linear in rank frequency, consistent with a serial search model of lexical access. In this article, the authors (a) describe a method of testing models of such effects that takes into account the possibility of parametric overfitting; (b) illustrate the effect of corpus choice on estimates of rank frequency; (c) give derivations of nine functional forms as predictions of models of lexical decision; (d) detail the assessment of these models and the rank model against existing data regarding the functional form of frequency effects; and (e) report further assessments using contextual diversity, a factor confounded with word frequency. The relationship between the occurrence distribution of words and lexical decision latencies to those words does not appear compatible with the rank hypothesis, undermining the case for serial search models of lexical access. Three transformations of contextual diversity based on extensions of instance models do, however, remain as plausible explanations of the effect
Modeling age-related differences in immediate memory using SIMPLE
In the SIMPLE model (Scale Invariant Memory and Perceptual Learning), performance on memory tasks is determined by the locations of items in multidimensional space, and better performance is associated with having fewer close neighbors. Unlike most previous simulations with SIMPLE, the ones reported here used measured, rather than assumed, dimensional values. The data to be modeled come from an experiment in which younger and older adults recalled lists of acoustically confusable and nonconfusable items. A multidimensional scaling solution based on the memory confusions was obtained. SIMPLE accounted for the overall difference in performance both between the two age groups and, within each age group, the overall difference between acoustically confusable and nonconfusable items in terms of the MDS coordinates. Moreover, the model accounted for the serial position functions and error gradients. Finally, the generality of the model’s account was examined by fitting data from an already published study. The data and the modeling support the hypothesis that older adults’ memory may be worse, in part, because of altered representations due to age-related auditory perceptual deficits
Maximum Lift-to-drag Ratio of a Slender, Flat-top, Hypersonic Body
Maximum lift-drag ratio of slender, flat top, hypersonic body assuming modified Newtonian pressure distribution and constant surface averaged skin friction coefficien
Similarity and dissimilarity as evidence in perceptual categorization
In exemplar models the similarities between a new stimulus and each category exemplar constitute positive evidence for category membership. In contrast, other models assume that, if the new stimulus is sufficiently dissimilar to a category member, then that dissimilarity constitutes evidence against category membership. We propose a new similarity–dissimilarity exemplar model that provides a framework for integrating these two types of accounts. The evidence for a category is assumed to be the summed similarity to members of that category plus the summed dissimilarity to members of competing categories. The similarity–dissimilarity exemplar model is shown to mimic the standard exemplar model very closely in the unidimensional domain
Sequence effects in categorization of simple perceptual stimuli
Categorization research typically assumes that the cognitive system has access to a (more or less noisy) representation of the absolute magnitudes of the properties of stimuli and that this information is used in reaching a categorization decision. However, research on identification of simple perceptual stimuli suggests that people have very poor representations of absolute magnitude information and that judgments about absolute magnitude are strongly influenced by preceding material. The experiments presented here investigate such sequence effects in categorization tasks. Strong sequence effects were found. Classification of a borderline stimulus was more accurate when preceded by a distant member of the opposite category than by a distant member of the same category. It is argued that this category contrast effect cannot be accounted for by extant exemplar or decision-bound models of categorization. The effect suggests the use of relative magnitude information in categorization. A memory and contrast model illustrates how relative magnitude information may be used in categorization
- …
