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Abstract

Models of visual word recognition have been assessed by both factorial and regression

approaches. Factorial approaches tend to provide a relatively weak test of models, and

regression approaches give little indication of the sources of models’ mispredictions,

especially when parameters are not optimal. A new alternative method, involving

regression on model error, combines these two approaches with parameter optimization.

The method is illustrated with respect to the dual route cascaded model of reading aloud.

In contrast to previous investigations, this method provides clear evidence that there are

parameter-independent problems with the model, and identifies two specific sources of

misprediction made by model.
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Methods of Testing and Diagnosing Model Error:

Dual and Single Route Cascaded Models of Reading Aloud

The ideal of modeling cognitive processes involves testing the consequences of the

processes conjectured in models against behavioral data. In the context of visual word

recognition, where many of the relevant predictors are properties of words, two approaches

have emerged to testing such models. The first is a factorial approach in which the

question is whether a model can simulate some set of empirically obseved significant

effects. The second is a regression approach in which the regression performance

(correlation with data) of the model’s behavior is compared to a regression equation with

the relevant predictors.

Coltheart, Rastle, Perry, Langdon, and Ziegler (2001) applied both approaches to

the assessment of their dual route cascaded (DRC) model of reading aloud. This model

incorporates a lexical (vocabulary-based) interactive-activation (IA) route and a

nonlexical (spelling-sound rule-based) route that interact (collaborate or compete) to

generate pronunciations. They argued, primarily on the basis of the results of the factorial

approach, that “the DRC model is the most successful of current computational models of

reading” (p. 251). They also argued that “if there is no other theory that ... [is] both

complete and sufficient, resting on laurels is a reasonable thing to do until the emergence

of a competitor.” (p. 204). It is our contention that neither the factorial approach nor the

regression approach nor their combination, as currently applied, is adequate to

demonstrate that a model is sufficient to explain effects or data. One reason is that the

parameters — numerical values defined to control the operation of a model without a fully

specified relationship with independent variables — used in such analyses are not chosen

to be optimal for the data set in question; in consequence, the criterion for sufficiency is

artificially low to compensate.
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In this paper, we (i) set out the problems with the existing approaches; (ii)

introduce a method of combining the two approaches with optimal parameter selection

that resolves several of these problems; (iii) describe the DRC model and our optimization

of its parameters for the Spieler and Balota (1997) data set, which was among those

examined by Coltheart et al. (2001); (iv) demonstrate the theoretical leverage the

approach can obtain with the application of the technique to the DRC; and (v) discuss

issues surrounding the analyses, including the data collection strategies that support the

method. We choose the DRC model for this exposition for three reasons. First, this model

is a complete model of reading aloud that appears to be able to account for a relatively

wide range of effects, indeed one that is wider than other models, and thus is in need of

strict testing. Second, the model is relatively well-suited to the approach described here.

Finally, Coltheart et al. have argued against using the optimization of parameters and in

favor of a pure factorial approach, despite some examination of regression approach results.

The Factorial Approach

The factorial approach to deciding whether a model is adequate to explain a

particular cognitive process is to generate a list of effects (including interactions) that one

has reason to believe occur in the task of interest, and then determine whether the model

can predict the direction of these effects correctly.

Coltheart et al. (2001), for instance, list 18 effects in word naming for which their

model can account, and of these, six relate to a standard word naming task (i.e., involve

neither nonwords nor priming): (i) regularity, (ii) frequency, (iii) their interaction, (iv)

position of (first) irregularity, (v) rime consistency, and (vi) length. One further effect in

standard word naming that Coltheart et al. attempt to account for with their model is the

orthographic neighborhood size (N ; Coltheart, Davelaar, Jonasson, & Besner, 1977;

Andrews, 1989, 1992) effect. They find that the model with their standard parameters
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does not predict an effect of orthographic N , but that an alteration to one of the

parameters causes the model to predict such an effect. Thus it was demonstrated that the

DRC can predict an orthographic N effect.

Suboptimal Parameter Sets.

This change in parameters to account for orthographic N effects raises the first

problematic issue for the factorial approach: Whether and when it is appropriate to

simulate each data set with different parameters. Coltheart et al.’s (2001) assert that they

“would in any case not be interested in an approach in which each set of human data is

simulated with a different set of DRC parameters” (p. 218). However, the DRC model is

supposed (through parameter changes) to account for (i) strategic effects that are caused

by changes in the stimulus list (see also Rastle & Coltheart, 1999) and (ii) individual

differences (arising from the strengths of the different routes). Since each set of human

data presumably comes from a different experiment with different items and participants,

it is hard to see why the parameters should not be different. Indeed, we would argue that

if one is following the good practice of seeking to disconfirm proposed theories, it is

necessary to optimize parameters in order to avoid the contention that the chosen

parameters are at fault, rather than the mechanisms of the model under test.

Incompleteness of Data.

A corollary of the specificity of parameters to experiments is that the results of any

given experiment speak only to the existence of some pattern under the specific conditions

(and hence parameters) of that experiment, and not to those of another experiment. For

instance, Coltheart et al. (2001) suggest that “it will be necessary to study whether the

DRC model can yield a beneficial effect of N on word naming through a modification of

the parameter set that does not compromise its successful simulation of the other effects”

(pp. 224–225). This suggestion requires the implicit assumption that N and position of
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irregularity effects will occur together in one experiment, and their model should account

for such a pattern. However, whether such an account is in fact desirable depends on a

number of empirical questions because these effects have previously been demonstrated in

different experiments, with different items and different participants. This means the

effects could be compatible with two different parameterizations of the correct model.

That is, in the absence of a data set demonstrating the combined pattern, it might yet be

the case that these effects are mutually exclusive, and a model could be correct to predict

them only with different parameter sets. Whilst this particular example could be resolved

with an experiment with both position of irregularity and N as factors, any single such

experiment would not solve the problem for other pairs of predictors, nor triples,

quadruples and so on. Factorial designs with few factors will thus lead to ambiguities as to

whether sets of effects should co-occur with the same parameters. Attempts to include

more factors will include increasingly many items if the experiments are not to lose all

their power. These items will necessarily be less well controlled (see Item Selection below),

the analysis will tend therefore to rely on statistical partialing (i.e., regression) — and

note that has already been the case for at least one study of the main effect of position of

irregularity (Rastle & Coltheart, 1999) — and generally increasingly resemble the

regression and mega-study approach.

Ignorance of Effect Magnitude.

The intercept and slope of the linear equation linking model cycles (response latency

in the model) to observed experimental response latencies are parameters that often

change in a hidden fashion when the factorial approach is used. Although such changes

will not change the significance of any effect in the model, the fit of the model should be

considered somewhat suspect if, say, (in a single experiment) a significant 10ms effect of

one variable corresponds to significant two cycle difference in the model, and a significant

10ms effect of another variable corresponds to a significant 20 cycle difference in the
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model (cf. Norris, 1994; Reynolds & Besner, 2004; Besner & Borowsky, 2006).

Difficulty of Detecting Effects.

It is anyway the case that the set of significant effects for a correct model is not

necessarily the same as that for the data, as model predictions are often relatively stable

measures of central tendency. This occurs when the argument is made that the model

predicts an effect that appears absent in data. For example, Siakaluk, Sears, and Lupker

(2002) and Sears, Campbell, and Lupker (2006) have criticized the multiple read-out

model (Grainger & Jacobs, 1996) for predicting an inhibitory effect of higher-frequency

neighbors that is not observable with stimuli in English. The problem arises because (as

will be shown below in the case of the DRC) model predictions have smaller standard

errors than data, and so conventional tests have more power to detect effects in models.

Using the combination of a significance test on the model and another on the data may

therefore lead to a liberal criterion for rejecting models because a difference in significance

need not correspond to a difference in magnitude of effect. Frost, Kugler, Deutsch, and

Forster (2006) have, for instance, criticized models with alphabetic lexical organization for

predicting facilitatory priming from orthographic neighbours when 12 experimental

conditions (across seven experiments) yielded no significant facilitation (although the

mean effect across these 12 conditions was 6.5 ms with SE 0.66).

One can only be confident that inferenece on the basis of the results of such a pair

of significance tests will not lead to error is where both tests are significant with different

sign of effect. Rastle and Coltheart (1998), for instance, rejected the DRC-G (a variation

of the DRC with the nonlexical route timed by whole graphemes rather than letters)

because it predicted faster responses for stimuli containing multi-letter graphemes, and

slower responses were empirically observed with such a manipulation (on nonwords).

Relying solely on such cases would be hyper-conservative on three counts: (i) only

mispredictions of sign can be detected; (ii) the detection does not make use of the
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(item-by-item) paired nature of prediction and data; and (iii) the implied solution to the

Behrens-Fisher (heterogeneity of variance) problem has size (Type I error rate) distortion

due to overestimation of the standard error.

Item Selection.

A related issue in applying the factorial approach to psycholinguistic tasks is in

selecting stimuli to realize contrasts of theoretical interest. It is at best difficult to select

words that differ only on the lexical variable(s) of interest, and not on some other variable,

especially for variables that are highly correlated (Cutler, 1981). This exacerbates the

difficulty that one cannot know whether one’s list of effects is complete, as comparisons

based on few items lack power in by-items analyses. Moreover, one can only know about a

failure to fit the data that is related to absence or presence of effects that have been

designed into the experiment. Poor predictions for particular words will not be

distinguishable from chance variation. It is not possible to identify a set of words included

in the experiment for which the model does particularly badly, unless it is due to a

contrast of interest designed into the experiment. Despite the modeler specifying

quantitatively all the predictions of the model, it is still necessary for an experimenter

testing the model to have some degree of analytic knowledge regarding the qualitative

predictions of the model in order to generate a useful design. Therefore, existing data

from factorial experiments have limited capability to guide new hypothesis-generation.

Summary of Problems with the Factorial Approach.

In summary, the factorial approach offers the promise of rejecting models when they

do not accommodate observable effects and allows the direct evaluation of whether a

model proper can explain effects via confound, but in its application to models proper, (i)

the argument is often available that parameter changes might correct the apparent misfit;

(ii) it is often desirable to make assumptions about the results of predictor combinations
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that have not occurred in factorial designs; (iii) relative magnitude or importance of

effects is not usually tested or testable; (iv) the method is hypersensitive in that it may

reject models that predict effects that are present but difficult to detect in data (because

of low power); (v) confounds are hard to avoid (although this is mitigated by the fact that

a correct model will correctly predict the results of a confounded experiment anyway); and

(vi) the list of effects may be incomplete, even in relation to collected data, meaning that

success for all the known effects does not necessarily correspond to accounting for the data.

The Regression Approach

The regression approach, by contrast, evaluates correlations between model

predictions and data on an item-by-item (word-by-word) basis. The worst case for a

model is when its predictions fail to significantly correlate with the data. Besner, Twilley,

McCann, and Seergobin (1990) described cases where this is true of the Seidenberg and

McClelland (1989) model, for instance. A model’s correlation can also be compared to the

multiple correlation of a number of variables of interest: If the model’s correlation is

smaller, then it cannot be explaining the effect of all the variables in the regression model.

Spieler and Balota (1997) examined the models of Seidenberg and McClelland and Plaut,

McClelland, Seidenberg, and Patterson (1996) on such a basis, and found that they do not

account for all the effects of log frequency, length and N . Besner (1999) also examined the

performance of these two models as well as the lexical route of the DRC on the basis of

naming latencies for 300 words; he drew similar conclusions for the Seidenberg and

McClelland and Plaut et al. models, and found that the DRC’s lexical route came close to

accounting for the same amount of variance as these three effects, accounting for

approximately 13% of the variance, where these effects accounted for 15%.

Suboptimal Parameters.
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Coltheart et al. (2001) assessed their DRC model in the same fashion against the

Spieler and Balota (1997) data set, among others. They found that the predictions of the

model could account for only 3.49% of the variance in this human naming latency data

set. It therefore appeared that the DRC model also does not quantitatively account for all

the effects of log frequency, length and N , as these three variables together can account

for in excess of 20% of the variance in these data. Again, it is of course perfectly

reasonable to assume that another set of parameters would yield improved prediction, as

the parameters used were chosen by hand. Indeed, we will show below that this is the

case. It is plausible that changing the parameter set might recalibrate the strengths of

these effects, which appear to be present according to the factorial approach, so that the

model can simultaneously account for their effects in the correct proportions.

Absent Effects.

Nevertheless, even were there continued subcriterial fit after parameter

optimization, it would be essentially impossible to determine from this type of regression

(alone) where precisely the model is at fault. One reason is that the locus of fault need

not be among the predictors in the regression. If the model predicts an effect that is

absent in the data this will cause shrinkage of the observed proportion of variance for

which the model accounts, since a greater proportion of the model’s variance is due to this

apparent noise (apparent, because it is in fact bias). For instance, suppose that the only

factor affecting some lexical task were word frequency, but we had a model that (by some

non-transparent mechanism) predicted not only an effect of word frequency but also a

strong effect of length. Such a model could readily be shown to correlate poorly with

response times, and indeed more poorly than word frequency alone. The inclusion or not

of length as a predictor in the regression on the data would not affect these results, and its

inclusion would be contraindicated by a non-significant effect. Nevertheless, it would be

the length effect that is the critical aspect of the model behavior that should be
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recognized as faulty. As with the factorial approach, analytic model knowledge is useful.

Moreover, if one looks at the error in prediction of individual words, it is unclear which of

the large errors are due to noise and which are consistently misestimated, so the data do

not give direct guidance in finding these absent effects.

Absent Variables.

Moreover, many more factors can be added to regressions on Spieler and Balota’s

(1997) data, as Balota, Cortese, Sergent-Marshall, Spieler, and Yap (2004) have done to

assess several effects, but comparing total variance accounted for by the regression to that

by the psychological model would only complicate the problem of finding where a model

does and does not succeed. Further, even were some model to exceed the criterial

proportion of variance for which it is known to be necessary to account, this does not

imply that there is not serious misfit for any of the items in the data, only that the misfit

is less than that for the known predictors. The criterion for misfit would nevertheless be

stricter than with the factorial approach.

Model-Specific Analyses.

One way that Coltheart et al. (2001) attempted to use the regression approach to

identify possibly useful modifications to the DRC model is a comparison of the quality of

its predictions for words and nonwords for the data of Weekes (1997). The model makes

considerably better predictions for the nonwords than the words of Weekes’ experiment.

Coltheart et al. reasoned that this is indicative of problems in the lexical route, which

uses word-specific information, rather than the nonlexical route, which processes stimuli

using spelling-sound correspondences, since the lexical route contributes to word naming,

but less to nonword naming. This pattern does not necessarily indicate that the nonlexical

route operates entirely correctly for nonwords, let alone for words, and indeed for words, it

will be seen that it probably does not. Moreover, such comparisons can only be valid in
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the presence of well-matched stimuli, incurring some of the problems of the factorial

approach. Even were this the case here, as a methodology for theory testing, this type of

analysis cannot be general, since few models truly operate in the necessary gated fashion.

Summary of Problems with the Regression Approach.

In summary, the regression approach offers the promise of rejecting psychological

models when they perform less well than simple regression models based on observable

effects. However, (i) any failure may be attributed to suboptimal parameters; (ii) the

version of this approach discussed so far (as used by Besner et al., 1990; Spieler & Balota,

1997; Balota & Spieler, 1998; Coltheart et al., 2001) does not permit localization of

problematic predictions; (iii) the criterion derived from any list of effects is too low if the

list of effects is incomplete; and (iv) strategies such as comparing regressions for different

item groups are applicable in model-specific cases that occur rarely if at all.

An Approach to Diagnosing Models

Optimized Parameters.

Can the problems of the factorial and regression approaches, as they are currently

applied, be rectified? The changes that are needed are not revolutionary. The “optimal

parameters” problem — that better parameters might rectify any apparent misfit — is

common to both approaches and is a severe obstacle to progress via theory refutation or

refinement, but has an obvious solution. Although optimizing parameters for complex

models, such as the DRC, is computationally expensive, doing so will necessarily overcome

this artificial barrier to falsification.

A theoretical objection to optimizing parameters made by Coltheart et al. (2001) is

that if performed on a case-by-case (experiment-by-experiment) basis, then one may

obtain different parameters to explain different effects, even if these effects co-occur. As

we have pointed out, whether or not the effects co-occur and with what relative
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magnitudes are empirical issues. They can be resolved by considering a larger dataset that

can be used to evaluate both, or preferably, all and any effects of interest. Then analyses

can be performed on both model and data to identify predicted and actual effects. Where

a failure for the model to simulate the data occurs, it cannot be due to incorrect

parameters, as any change in the parameters necessarily will be at the detriment of some

other aspect of the fit, to the extent that the overall fit to the data is relatively

compromised. Moreover, availability of higher powered technology can overcome technical

difficulties that might prevent such optimization.

Regressing Model Predictions.

So, if optimal parameters are chosen, it becomes possible with relative certainty to

detect some levels of failure using the regression approach, when the fit (e.g., R2) of the

model does not reach the levels of a regression with known factors. Loci of failure can

then be identified using a combination of the factorial and regression approaches: From

the factorial approach, we take the idea of treating the model predictions in a manner

comparable to that of the data, but in the manner of the regression approach, the entire

set of data is analysed, with the variables that would otherwise have been experimentally

controlled entered as covariates. Such analyses are much more powerful than those created

by selection of items, as they use more data points, and discard fewer data (because they

avoid the imprecision of creating discrete categories). This is especially important to

counteract the reduction in power due to variance inflation in cases where highly

correlated predictors are considered, and such cases can be theoretically important. A

further important advantage is that unusual or unexpected contrasts may also be tested

without the difficulties of selecting novel controlled stimuli.

The use of a regression model to examine the fit of the model to the data also helps

resolve the issue of the relative magnitudes of the effects. Not only will an inability of the

model to reproduce the correct relative magnitudes of the effect cause the overall fit to be
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inferior, but examination of the regression coefficients could reveal which effects are

relatively too strong or too weak in the predictions.

Regressing Model Error.

In addition to the point that effect magnitude is important in identifying

problematic predictions, a key issue in comparing a psychological model to data is that the

model may predict a significant effect that is not significant in the data, but only due to

differences in power. The proposed approach addresses both of these problems directly by

examining the regression equations for the difference between the model predictions and

the data points, that is, the model’s error. If the model and data regression coefficients

differ, and a factor is a significant predictor of model error, then we can infer that the

model is wrong in some aspect associated with this factor (although not necessarily

directly). Moreover, localization of problems to a specific aspect of the data may not

localize them to a specific, readily modified, aspect of the model, as changes to the model

could greatly affect the optimal parameters in the unchanged components of a model, due

to an alteration in the optimal division of labor. If several problems are indicated, they

may all share a single root cause in the structure of the model. A direct modification to

resolve one such problem might then simultaneously solve the other problems. However, a

targeted modification to another part of the model to solve a different problem might only

introduce more problems. Nevertheless, some indication of how the model fails to capture

the data will be of use in determining future theoretical steps.

The Illustration of the Technique

We will now proceed to demonstrate the proposed new approach with reference to

the Coltheart et al. (2001) DRC model. An alternative single-route (SRC) model that

consists only of the lexical route (unchanged from the DRC) is also used; this allows us to

form a model-specific test of the necessity of grapheme-phoneme conversion rules to
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augment interactive-activation (IA) models of this kind.

The Dual Route Cascaded Model

The DRC model is a computational instantiation of dual route theory by Coltheart

et al. (2001) involving some assumptions that are unique to versions of this theory

associated with Coltheart and colleagues. Its lexical route is an extended (horizontally

generalized) and modified version of the IA model of McClelland and Rumelhart (1981).

This is supplemented by a non-lexical all-or-nothing grapheme-phoneme conversion (GPC)

rule route. We will briefly describe the operation of the DRC model; readers are referred to

the original paper for a more complete explanation. Where some aspects of its operation

are not described in the original paper, these have been reverse-engineered from the

operation of the implementation of the model that Coltheart et al. have made available.

Feature Level

The feature level consists of 8 sets of units of the type described by Rumelhart and

Siple (1974); each set consists of 14 pairs of feature-present and feature-absent units. In

each pair, if the feature is present, the feature-present unit takes the value one, and the

feature-absent unit the value zero, with the pattern reversed if the feature is absent. They

are not influenced by the activations of any other units, only by the stimulus presented to

the model, and they are the only component of the model directly influenced by the

stimulus. Words are left-justified when presented to the model.

Letter Level

The letter level consists of 8 sets of 27 units representing the 26 letters of the

English alphabet and one extra for “absent”. The activation of units in this level, ai(t) for

unit i on time tick t is governed by Equation 1:

ai(t + 1) = (1 − θi)ai(t) + ρǫi(t), (1)



Analyzing model error in the DRC 16

subject to the constraint that ai must be in [0, 1] (and takes the nearer value when it falls

outside this range), where θi is the (positive) letter decay parameter (a decay parameter

exists at each level), ρ is a global activation parameter, and ǫi(t) is the squashed net input

to the unit i. The squashed input ǫi(t) is calculated from the net input ni(t) thus:

ǫi(t) =















ni(t)(1 − ai(t)), ni(t) ≥ 0;

ni(t)ai(t), ni(t) < 0,

(2)

where ni(t) is calculated as the sum of the products of the activations of connected units

at t − 1 with the relevant connection weight parameters. Net inputs to the letter level

units are influenced by feature level units that are consistent with the letter units per the

feature-letter excitation parameter, and those that are inconsistent per the feature-letter

inhibition parameter. Net input is also influenced by the orthographically consistent and

inconsistent words with the orthography-letter excitation and orthography-letter inhibition

parameters. Moreover, every letter within each set gives inhibition to every other letter

within the same set according to the letter-letter inhibition parameter.

Orthographic Lexicon

The orthographic lexicon consists of a unit for every orthographic word form in the

model’s vocabulary. Their activations and net inputs are governed by Equations 1 and 2.

Each unit receives activation from consistent letter units and is inhibited by inconsistent

ones, according to the letter-orthography excitation and letter-orthography inhibition

parameters. Consistent phonology units also give excitation in proportion to the

phonology-orthography excitation parameter. Further, orthographic units are mutually

inhibitory, per the orthographic-orthographic inhibition parameter. Lower-frequency words

are additionally inhibited by an additional bias to the net input of value
(

lg fi

6.068 − 1
)

φ

where fi is the frequency of the word i, and φ is the frequency scaling parameter. 6.068 is

slightly more than the Napierian logarithm of the highest frequency in the lexicon1.
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Grapheme-Phoneme Conversion Rule System

The grapheme-phoneme rule system consists of 8 sets of 44 units, each

corresponding to a phoneme, or “absent”, in a left-justified phonological representation.

The activation of these units is governed by the activation of the most activated units

within each of the sets of letter units on the same2 time tick. On any given time tick, only

a subset of the letters are considered: The first (left-most) ⌊1 + t−α
β

⌋ letters are considered

(if positive), where α is the GPC delay parameter and β is the GPC rate parameter.

Phoneme units are activated from the letter units according to a set of GPC rules

derived from analyses of the vocabulary of the model. These operate from left-to-right on

the input to produce left-to-right output. Rules may be selectively operational at the

beginning of the input, at the end of the input, which is detected when the

to-be-processed letters are followed by the absent letter, or in the middle of the input (i.e.,

anywhere else in the input), or a combination of two, or operational in every position.

Once a set of letters has contributed a phoneme or phonemes to the output, consideration

proceeds to the following letter(s). Some contextual rules operate only in certain

(preceding or following) contexts, but the contextual letter(s) are not part of the rule, and

are not passed over for consideration if they are following context. Other distant rules (all

of the “silent e” type) are applied in response to letter patterns that contain a central

portion that can be matched by any letter; this wildcard letter is not considered part of

the rule, but those letters after this are part of the rule (and therefore affect the weighting

discussed below). Consideration passes to the wildcard letter, and those letters thereafter

are not passed over for consideration. Any remaining “absent” letters that are available

for consideration at this stage are converted to final “absent” phonemes.

The strength of the activation of the output in any position in the rule system is the

arithmetic mean activation of the letters that form part of the rule generating the

phoneme there at this stage. Finally, a set of search-and-replace phonotactic rules are
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applied to the output; most of these apply to the phoneme /s/ in post-vocalic contexts,

but only when produced by the rule s→/s/, and in particular not when produced by the

rule sefinal →/s/ (e.g., in hose).

Phonological Lexicon

The phonological lexicon consists of a unit for every phonological word form in the

model’s vocabulary. The activation and net input are again governed by Equations 1 and

2. Excitatory input comes from consistent orthographic word units and consistent

phoneme units according to orthography-phonology excitation and phoneme-phonology

excitation parameters. Inhibitory input comes from inconsistent phoneme units per the

phoneme-phonology inhibition parameter, and from other phonology units with the

phonology-phonology inhibition parameter. The phonological lexicon is also subject to the

same frequency-based bias to input as the orthographic lexicon; in Coltheart’s

implemented model (and our copy), written frequencies are used for these values.

Phoneme Level

The phoneme layer consists of 8 sets of 44 units mirroring those in the GPC level.

The behavior of these units is governed by Equations 1 and 2. Excitation comes directly

from the GPC system according to the GPC strength parameter, and also from consistent

phonological word units by the phonology-phoneme excitation parameter. Inconsistent

phonological word units and phoneme units in the same position give inhibition according

to phonology-phoneme inhibition and phoneme-phoneme inhibition parameters. Output

occurs when there is a complete contiguous sequence of phonemes of some length from the

leftmost position in which all the phonemes exceed the stopping criterion parameter, and

the rightmost phoneme of the sequence is the absent phoneme. If in any position there is

more than one phoneme exceeding the criterion, the most active is taken.
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Optimizing the DRC

The target data were the correct mean response times for the 2,713 words3 in the

Spieler and Balota (1997) data set that were in the model’s vocabulary and were not

heterophonic homographs. Assessment of fit was by R2 for predicting these response times

linearly from the number of cycles in the model and the initial phoneme (dummy) coded

as a factor; we permitted the initial phoneme to be outside the scope of the model because

some of the variability attributable to it will correspond to a known non-psychological

mechanism (differential sensitivity of the voice key to different phonemes)4. We maximize

R2 because it is equivalent to maximizing likelihood under the assumptions of ordinary

linear regression, which we use here; certain approximations do not hold if likelihood is

not maximized. A case could readily be made for making different assumptions, and

would definitely be necessary if the model specified the distribution of response times; this

would require more sophisticated regression machinery for the type of analysis we describe

and would constitute a useful generalization of our suggestion here. A heavy penalty was

applied to wrong responses so that the optimization procedure would discount parameter

sets that did not produce perfect accuracy.

The optimization was based on the version of the Nelder-Mead simplex procedure in

the GNU R statistical suite, which interfaced with our C++-programmed DRC routine to

obtain response times for given parameter sets. Our routine gives the same response time

and pronunciation outputs as the original and the same results as the Coltheart et al.

(2001) paper (except that the original did not implement the decay parameter). At each

stage the currently best parameters (or at the beginning, the standard parameters of

Coltheart et al. (2001)) were used as starting values in one run, and a further 8–12

(depending on availability of processing time) were run in parallel using starting values

that were chosen by adding random noise to the best set. The simplex procedure is a

standard non-gradient local search method based on examining the corners of a region of
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interest, reflecting to adjacent regions to find improved objective values, expanding the

region in directions of high improvment, and shrinking the region when movement fails to

yield improvement. The addition of noise was designed to counteract the local properties

of this otherwise robust procedure. The stage was terminated for each run of the simplex

procedure when 500 evaluations of the model had been completed (the default in R, again

to counteract the effects of local tendencies in the procedure) or if it was sooner, a week

had passed (an external constraint on our computing time).

The processors used for this program were 2.4GHz Pentium 4 Xeons, able to

complete a single run of the model over all words in ca. 20 minutes (depending on the

total number of cycles used for the parameters in question; this coincidentally meant that

one week and 500 runs were approximately the same duration). After approximately six

months, neither the simplex procedure nor adding random noise to the parameters

resulted in noticeable improvement in the fit of the model; the best parameters at that

point were taken as the overall best parameters for the data set. Optimization for the

single-route model was similar, although faster as fewer parameters were to be optimized.

Results

Overall Fit

We first examine overall performance in the manner of the regression approach. The

obtained best parameters are listed in Table 1. Initial phoneme accounted for 37.04% of

the variance. The DRC with standard parameters plus initial phoneme accounted for

43.09% of the variance. The DRC with best parameters plus initial phoneme accounted

for 50.10% of the variance in the response times. The corresponding best SRC fit

accounted for less variance: 48.56% of the total. Thus the use of optimal parameters is

clearly essential; it is noteworthy that even the SRC with optimal parameters accounts for

more variance than the DRC with the standard parameters. To aid comparison, the
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standard adjustment to R2 for overfitting per additional linear parameter would be

0.02–0.03%, and the DRC has only three more parameters than the SRC, suggesting that

a nonlexical mechanism is necessary in the model; it will be seen that it indeed allows a

better (but imperfect) account of regularity effects.

By way of comparison, the standard predictors of letter length, log CELEX

frequency5 and orthographic N along with initial phoneme accounted for 51.10% of the

variance. The regression model has many fewer parameters than the DRC, but accounts

for more of the variance. Moreover, this regression model gives an underestimate of the

variance the DRC ought to be able to account for because it is also supposed to explain

the regularity effect, the position of irregularity effect, the interaction between frequency

and regularity, and there is also evidence of an interaction between orthographic N and

frequency, but these factors are not included in the regression. This illustrates the key

weakness of the factorial approach: Even though the DRC should account for the effects

in the regression and more according to the results of factorial analyses, it falls short when

these effects are assessed on an item-by-item basis.

Relative Predictor Strength

Before turning to a more complete set of predictors (including those considered by

Coltheart et al., 2001, such as the frequency by regularity interaction, and more), we first

ask where the DRC model falls down with these predictors. We examined regression

models with these predictors taking the data, the models, and the models’ error in

predicting the data6 as the response (after onset had been covaried out). In Table 2, it

can be seen that although the model does predict a robust (∼5 s.e. from zero) effect of

orthographic N , the predicted effect is noticeably (∼7 s.e.) weaker than that in the data.

To reiterate, the model predicts the qualitative effects, but it does not correspond to the

data when simultaneously evaluated on these effects. Neighborhood effects will be
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examined in more detail below.

Effects in Word Naming 1: Core Effects

We first examine the core effects that Coltheart et al. (2001) claim to account for

with the DRC: (i) frequency, (ii) regularity and the frequency by regularity interaction,

(iii) position of (first) irregularity, (iv) rime consistency, and (v) length.

Frequency Effect.

To examine the predictions for word frequency of the model, we used analyses in

which several other effects were partialed out, viz.: Length, orthographic N , regularity,

position of (first) irregularity, and first phoneme. The frequency effect is illustrated in

Figure 1 for the DRC and SRC. It appears that both models’ predictions follow log

frequency quite closely, possibly with a slight concavity up on the log frequency scale.

There is also upwards concavity in the human naming data, largely contributed by

frequency saturation (e.g., Gordon & Caramazza, 1985) such that there is little effect of

frequency at high frequencies (above ca. 2000 or more on raw CELEX count). This second

order curvature has been assessed by Balota et al. (2004) with regressions using quadratic

log frequency. However, there is some indication in the figure of runs of misprediction in

the midrange (underprediction just below a frequency of 100, and overprediction just

above) that may reflect higher order components of curvature in the data.

We therefore examined models with linear, quadratic and cubic trends in log

frequency, with the results in Table 3. There was evidence in the data of a positive cubic

trend modifying a negative trend in the linear and quadratic contrasts. Errors in the

DRC’s predictions appeared to be systematically related to frequency: Its predictions were

dominated by the linear negative trend, and the errors had a systematic relationship to a

cubic polynomial in log frequency (as a block, p < .05). Errors in the SRC predictions

were also systematically linked to such a function, although its cubic trend is in the correct
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direction (p < .05 on the omnibus test). One possible reason for the discrepancy is that

frequency saturation results from frequency not being the relevant factor. A candidate

alternative factor is contextual diversity, the number of contexts (operationalized as corpus

documents) in which a word appears. This factor is inherently highly correlated with

frequency, and there is evidence that it might account for the apparent effects of frequency

(Adelman, Brown, & Quesada, 2006; see also McDonald & Shillcock, 2001, Adelman &

Brown, in press). High frequency items are likely to be needed relatively unpredictably in

practically any context, and so their accessibility effectively needs to be at ceiling.

Regularity and Frequency.

A key qualification on the frequency effect comes, however, from its interaction with

regularity: Words whose pronunciation is unusual given their spelling (exceptions) are

named slower than those whose pronunciation is usual (regulars), but this effect is

diminished if the words are of high frequency (e.g., Seidenberg, Waters, Barnes, &

Tanenhaus, 1984; Taraban & McClelland, 1987, but see also Jared, 2002). This interaction

is viewed as very important in validating models of word naming (e.g., Seidenberg, 1985;

Norris & Brown, 1986; Seidenberg, 1986; Paap, McDonald, Schvaneveldt, & Noel, 1987;

Seidenberg & McClelland, 1989; Coltheart, Curtis, Atkins, & Haller, 1993; Norris, 1994;

Plaut et al., 1996; Kwantes & Mewhort, 1999; Coltheart et al., 2001).

The relevant data and predictions for this interaction are presented in Figure 2 for

the DRC, and Figure 3 for the SRC. Regularity was operationalized using the DRC’s

nonlexical route: A word was an exception if the pronunciation ultimately assigned by the

nonlexical route differed from the vocabulary pronunciation; 444 (16.4%) of the words

were identified as exceptions. Although Glushko (1979) suggested that a model of the

SRC type might support spelling-sound inconsistency effects, in terms of the dual route

explanation, it is not surprising that the SRC was relatively immune to the regularity

effect; although the lexical route supports some form of analogy processing of neighbors,



Analyzing model error in the DRC 24

this processing does not generate a full exception effect. The DRC exhibited a clear effect

of regularity, with a slight apparent interaction with frequency, as the exception penalty

was higher at the lowest frequencies. This occurs in the model because exception words

must typically wait until the irregular phoneme is sufficiently activated by the lexical

route, and this occurs more slowly for the lower frequency words as they have a stronger

negative bias on their net input. The data were more noisy, but there seems to be

evidence of frequency saturation for both exception and regular words with both having

response times in the region of 465ms for frequencies in excess of 2000.

To quantify the frequency by regularity interaction, we fitted a main exception effect

and distinct cubic functions of log frequency for regulars and exceptions to data and

models after the covariates listed for frequency (excepting position of irregularity). Table 4

confirms that the SRC failed to predict an exception effect. Although both the DRC and

SRC predicted the strong linear component of log frequency for exception words, and the

individual components of the cubic polynomial in log frequency did not reach significance

in the regression with model errors, overall these errors were predicted by the complete

cubic in log frequency (ps < .01). Further, the DRC fitted the frequency effect for regular

words poorly (p < .001), but the SRC showed no evidence of misfitting this effect (p > .1).

Thus, although the frequency by regularity interaction could be captured qualitatively by

the DRC, this did not correspond to correct prediction at a more detailed level.

Position of (First) Irregularity.

A line of evidence adduced in favor of a dual-route model with a serial nonlexical

process is the influence of the position of irregularity on the exception effect (Coltheart &

Rastle, 1994; Rastle & Coltheart, 1999; Roberts, Rastle, Coltheart, & Besner, 2003; but

see also Zorzi, 2000; Rastle & Coltheart, 2000). It appears that exception costs for items

whose first irregularity occurs in the production of earlier phonemes are greater than those

for items whose irregularity is later. The DRC model predicts a position of irregularity
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effect because the nonlexical route’s output can compete more strongly for earlier

phonemes because they are generated sooner by the letters toward the left of the word.

Exception costs for the naming data and the DRC (covarying first phoneme, letter

length, orthographic N , and full cubic log frequency by regularity interaction) are

described in Table 5 (because there were on average no exception costs for the SRC, it was

omitted from the analyses). The position of irregularity is given by the first phoneme at

which the nonlexical and vocabulary pronunciations differ.

As in Rastle and Coltheart’s (1999) data, there was a large exception cost for the

first position of irregularity, and a smaller cost for second position, but the third position

cost is non-zero and quite similar to the second position cost. This last point contrasts

with the lack of a significant third position effect in the data of Rastle and Coltheart and

Roberts et al. (2003). It is possible that one or more of the results is an error — there

could be insufficient power in the small experiments, or a type I error in the mega-study

— or it might be the case that the choice of items or participants systematically affects

the results, and a model would be correct to be able to predict both patterns with

differing parameters. In light of the latter possibility, we refrain from discounting either

pattern of results on the basis of the current data. In the DRC, the effect of irregularity

decreases with position, but the best parameter fit of the DRC underpredicts the cost at

Position 1 for the Spieler and Balota data, and overpredicts it at Position 2.

Given that the form (or at least, the strength) of the frequency effect depends on

the regularity of the stimulus, and there are effects of the position of irregularity over and

above the effect of its presence, it seems plausible that there might be different frequency

effects at different positions of irregularity. There was no evidence of this for the data

(p > .2), and although the DRC did predict some interaction (p < .05), the interaction did

not predict the model’s error (p > .1), suggesting that the apparent difference was an

artefact of the smaller standard error of model predicted response times.
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Rime Consistency.

We sought a main effect of rime consistency (Glushko, 1979), the ratio of friends

(words that look as though they should rhyme, and do) to friends plus enemies (words

that look as though they should rhyme, but do not), after the previously discussed

variables were covaried out, using types only, frequency weighted types (i.e., tokens), and

log-frequency weighted types for the ratios in three separate analyses,7 presented in Table

6. All three showed a significant effect in the data. Further analyses showed that either

the types ratio or the log-weighted ratio could subsume the effect of the tokens ratio. The

types and log-weighted ratios were mutually redundant, so only the former was retained as

a covariate (it had a very slightly higher ∆R2). The DRC predicted a much weaker effect

than that in the data, and the SRC none at all.

(Letter) Length.

As has been seen (in Table 2), there is an effect of number of letters on naming

latency, each letter costing ca. 4 ms, and this is more-or-less accurately predicted by both

single- and dual-route models. This remains the case with additional covariates.

Effects in Word Naming 2: Peripheral Effects

We now move beyond Coltheart et al.’s (2001) main list of effects to examine: (i)

neighborhood size (although they did examine this variable, see above); (ii) number of

irregularities; (iii) the length by regularity interaction; (iv) whammy effects; (v) the

influence of whammying on regularity effects; (vi) number of phonemes; (vii) body

neighborhood size; and (viii) interactions of frequency with consistency variables.

Neighborhood Size (Revisited).

The analyses above indicated that the orthographic N effect was predicted to be

weaker in the DRC than was observed in the data. According to Coltheart et al. (2001),

facilitatory neighborhood effects occur in the DRC model because the orthographically
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similar neighbors’ phonological representations are activated and in turn activate their

constituent phonemes, most of which will be consistent with the correct pronunciation.

The effect in the model is therefore due to lexical print-sound conversion, as confirmed by

lesion studies of the model (Reynolds & Besner, 2002).

If the orthographic N effect is indeed due to lexical print-sound conversion, then

those orthographic neighbors that are also phonological neighbors (i.e. differ in exactly

one phoneme) should have a strong facilitatory influence in both the model and data.

Peereman and Content (1997) termed these phonographic neighbors, and they have found

evidence that it is specifically these phonographic neighbors, rather than all the

orthographic neighbors, that drive orthographic neighborhood effects for French words

and pseudowords (Peereman & Content, 1995, 1997). Moreover, Adelman and Brown

(2007) have found evidence of the same effect from four mega-studies in English (including

the one on which these analyses are based). Mulatti, Reynolds, and Besner (2006) have

argued in contrast that the (whole) phonological neighborhood drives neighborhood effects

rather than specifically the phonographic neighbors.

Table 7 shows analyses seeking simultaneous effects of the three neighborhood size

variables. Only phonographic neighborhood size had a significant effect in the data. For

both the DRC and SRC, an underestimation of the phonographic neighborhood effect was

significant, as was an overestimation of facilitation from the phonological neighborhood for

the SRC. For further analyses, we removed both the orthographic and phonological

neighborhood sizes as both remained non-significant after the other was removed.

It was also the case that the introduction of phonographic N (in place of

orthographic N) almost halved the estimated effect of the rime consistency ratio to a

marginal -2.697 (SE 1.600, p = .092). We did not eliminate it as a covariate at this point

because once the next two variables (number of irregularities and the regularity by length

interaction) were partialed out, the estimate increased to a significant -3.551 (SE 1.606).
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Number of Irregularities.

Since irregularities in pronunciation relative to grapheme-phoneme correspondences

produce slower responses, it seems reasonable to ask whether increasing numbers of

irregularities further slow responses. This would not be expected if exception costs are due

to the erasure of fast assembled phonology as in the dual route model described by Norris

and Brown (1986), but would be expected if exception effects occur due to the serial

resolution of phonological competition as in LEX (Kwantes & Mewhort, 1999).

Here, as there are few monosyllables with more than two irregularities, we simply

divided the words into those with a single irregularity and those with many irregularities

(i.e. whose correct pronunciation differed in more than one phonemic slot from those

produced by the DRC rules), and sought an additional response time cost for the latter.

The data showed a clear 6.879 ms (SE 1.993) cost, but the DRC predicted an advantage:

-1.373 ms (SE 0.362), which clearly differs from the effect in the data. This appears to

reflect some lexical factor to which the model is sensitive, as the SRC also predicted the

advantage (-1.396 ms, SE 0.497), but clearly neither model predicts the observed cost.

Regularity by (Letter) Length Interaction.

In both stage and cascade models, when two factors effect changes in speed of

processing in the same component, the result is typically an interaction of the effects

(Sternberg, 1969; McClelland, 1979). Adelman (2005) examined length and regularity

effects, which both relate to the nonlexical component of the DRC, and observed that the

DRC with standard parameters showed an subadditive interaction of regularity and length.

We examined which, if any, interaction between these variables obtained in the

Spieler and Balota (1997) data (after partialing out regularity by cubic log frequency,

position of irregularity, plurality of irregularity, phonographic N and rime consistency

ratio). The interaction was superadditive (p < .01), with a 6.978 ms/letter (SE 0.991)

effect for exception words (which are already slower) and a 3.700 ms/letter (SE 0.486)
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effect for regulars. By contrast, the DRC showed a 5.562 ms/letter (SE 0.070) effect for

regulars, but a -0.479 ms/letter (SE 0.143) effect for exceptions. Clearly, the interaction

predicted model error (p < .001). The SRC showed an superadditive interaction (p < .01),

4.429 ms/letter (SE 0.247) for exceptions and 3.707 ms/letter (SE 0.121) for regulars, but

its size was smaller than that in the data (p < .05).

Position of (First) Whammy.

Rastle and Coltheart (1998) introduced the term whammy to describe the situation

where the spelling-sound correspondence for a digraph (a two-letter grapheme) differs

from the regular pronunciation of the digraph’s first letter. For instance, sh is regularly

pronounced /S/ (in the notation of the model) as in ship, but s without a following h is

regularly pronounced /s/ as in sip. In processing these words, the DRC’s nonlexical route

pronunciation will be temporarily erroneous (for regulars) when only first letter of the

digraph is available. The model might therefore predict a slowing for these whammied

words, whose temporarily incorrectly parsed. Rastle and Coltheart confirmed for a set of

pronounceable pseudowords with and without whammies that both people and the model

produced slower responses for those that were whammied.

Of course, neither the model nor human participants need show the same results in

response to words as to nonwords, and the model’s best parameters for these data are

different from those in the simulations of Rastle and Coltheart (1998). Table 8 describes

the relevant analyses. We considered a word whammied only if the pronunciation of the

whole word was regular and a phoneme was temporarily mistranslated by the

grapheme-phoneme route due to letters being unavailable. The data showed a response

time cost for first position whammies and a benefit for second position whammies.

Although the DRC made predictions in the correct direction for these positions, they were

much smaller than in the data. The fifth position whammying effect that is significant in

the model predictions is larger, but does not reach significance, in the data. The SRC
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predictions bear little resemblance to the data.

Influences of Digraphy (Whammying) on Regularity Effects.

Andrews, Woollams, and Bond (2005) investigated the suggestion of Coltheart et al.

(2001) that apparent rime-consistency effects might be due to whammying, as a confound

between whammying and consistency appeared to underly the ability of the DRC model

to predict the condition means of an experiment of Jared (1997) with a consistency

manipulation. In two experiments, Andrews et al. factorially manipulated spelling-sound

regularity and consistency with the presence of digraphs. They found that both irregular

words and inconsistent words were only slower than regular control words when the

irregularity or inconsistency arose from a digraph that would have been whammied were

the word regular. We divided the irregular words in the Spieler and Balota (1997) data

into those that met this criterion and those that did not. Replacing the standard DRC

regularity criterion to one that admitted only these exception words as exceptions in the

regression equation (including the interactions) changed its R2 from 55.93% to 55.89%.

Instead, creating a three-level regularity factor with regular, whammy-exception and

nonwhammy-exception as levels, and including the interactions of this factor with cubic

log frequency, position of irregularity, length and multiple irregularity, signficantly

increased the R2 to 56.39% (p < .01). We then sought to reduce the complexity of the

model: The interaction with length and the interaction with cubic log frequency could be

reduced to have only two levels, regular and exception; and multiple irregularities affected

only exception words whose first irregularity was digraphic. This model had an R2 of

56.31% (p > .5 for the decrement).

Table 9 shows the various exception and whammying costs found in such an

analysis; the SRC is omitted as it has already been seen that its predictions for whammies

and exceptions are highly inconsistent with the data. It is again clear that despite being

provided with the best parameters, the DRC did not predict an appropriate whammy
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effect, predicted an insufficient exception cost for first position irregularities and too great

an exception cost for later irregularities, and did not predict the large effect of a second

irregularity. Moreover, it did not predict the interaction between whammying and

irregularity and position of irregularity; on the whole, it predicts greater exception costs

for exceptions that would not be whammied, and this is the case for Position 1

irregularities (which were not examined by Andrews et al., 2004) in the data, but not

Position 3 irregularities, where the opposite effect is found.

Phonemic Length.

A consequence of the manner in which the nonlexical route of the DRC generates

length and whammy effects suggests that the length effects predicted by the model arise

from the number of letters not the number of phonemes, and that number of phonemes

should produce a facilitatory effect only due to digraphy. Therefore, we investigated

whether there were phonemic length effects after the effects of the variables that have

already been described. Indeed, there was a -2.039 ms/phoneme (SE 0.516) effect

(p < .001), which the DRC predicted to be much smaller (p < .001) at -0.191 ms/phoneme

(SE 0.075, p < .05), as the effect can only arise from digraphs that are not whammies

(e.g., where ll→/l/ in hill does not whammy l→/l/). The SRC predictions were in the

opposite direction (0.896, SE 0.127, p < .001). We will go on to discuss how this result

contrains possible rules for the initiation of pronunciation in reading aloud.

Since the letter length variable’s influence varied with regularity, we investigated

whether a similar interaction was also observed with phonemic length, and indeed it was

(p < .05). The effect was -1.500 ms/phoneme (SE 0.558, p < .01) for regulars, but -4.930

ms/phoneme (SE 1.254, p < .001) effect for exceptions. The DRC predicted a -0.236

ms/phoneme (SE 0.081, p < .01) effect for regulars, but no effect for exceptions (0.050,

SE 0.182, p > .5), and the interaction significantly predicted model error (p < .01).

Partialing out phonemic length removes the remaining effect of rime consistency
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(-2.413, SE 1.646, p > .1), suggesting with other results that the influence of rime

consistency is due to confounds with phonemic length and phonographic N . Rime

consistency was therefore removed from the list of covariates. Once phonemic length was

partialed, a small facilitation effect from phonological N (-0.085, SE 0.036) reached

signficance, without altering other effects. The DRC predicted the phonological N effect

should be inhibitory (0.021, SE 0.005). The SRC correctly predicted facilitation, and the

partialing out of this variable made its phonemic length prediction facilitatory. Partialing

out phonological N did not substantially alter the models’ letter length predictions.

Body N .

Some authors (e.g., Ziegler, Perry, Jacobs, & Braun, 2001) have investigated body

N , the sum of friends and enemies, as a determiner of naming latencies8. As with rime

consistency, we investigated this variable in separate analyses using types only, frequency

weighted types (i.e., tokens) and log frequency weighted versions of the body N variable.

None of these had a significant effect (p > .1) after the already discussed variables had

been covaried out. The types only and log-frequency weighted body N showed no effect for

the DRC model (p > .1), and all three gave significant facilitation for the SRC (p < .05).

Interactions with Frequency: N, Rime Consistency and Regularity (Revisited).

Several variables have been said to produce the regularity by frequency interaction

that has been entered into the analyses so far: As well as being interpreted as a genuine

interaction between regularity and frequency (e.g., Coltheart et al., 2001), it has been

attributed to an interaction between consistency and frequency (e.g., Plaut et al., 1996,

but see Jared, 1997). Also, as we have noted, phonographic N accounts for some

spelling-sound consistency effects, and Balota et al. (2004) have found an interaction

between orthographic N and frequency. We therefore conducted analyses with all three

such interactions. As before, we used cubic log frequency, and conducted analyses that
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included the multiplicative interactions of this frequency block with each of the three

types of rime consistency ratio. Only in the analysis using the token ratio did the

frequency interaction reach significance, so we further consider only this ratio.

All three interactions showed significant unique effects. The phonographic N by

frequency interaction (p < .001) was such that the advantage for words with high

phonographic N was smaller for high frequency words. The token rime consistency ratio

by frequency interaction (p < .05) was such that high consistency words showed greater

frequency effects. Finally, the regularity by frequency interaction remained as expected

(p < .001): Frequency effects were greater for exceptions than for regulars.

What Do These Variables Explain?

The R2s for the final regression models were 57.41% for the data, 98.21% for the

prediction of the DRC (including onsets), 12.57% for the error in the DRC, 95.20% for the

prediction of the SRC (onsets included), and 14.09% for the prediction of the SRC’s error.

Discussion

There are significant difficulties in obtaining strong conclusions regarding the

adequacy of models from previous effect-based factorial approaches and regression

approaches based on total fit, especially when the parameters used in generating model

predictions are not optimal. We argued that several difficulties can be overcome by finding

optimal parameters for large data sets and performing regression analyses on model

predictions for these data and the error in these predictions, in addition to regressions on

the data themselves. We demonstrated the techniques with Coltheart et al.’s (2001) DRC

model. One set of differences between the model and data was related to frequency effects,

and we suggested that these might relate to the functional form of the bias on the lexical

nodes and the possiblity that contextual diversity rather than frequency might be the

causative factor (Adelman et al., 2006). Other aspects of model error appeared to be
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related to spelling-sound conversion, including the regularity by length interaction, and

the multiple irregularities effect. In the following, we will explicate the manner in which

the left-to-right grapheme-phoneme conversion route, a core theoretical component of the

DRC, causes problems in accounting for these more subtle aspects of the spelling-sound

phenomena that it is designed to explained. We will then turn our focus to the more

general applicability of the method we have employed.

Exception Effects and the Nonlexical Route of the DRC

Why should the DRC’s nonlexical route produce length and exception effects, but a

subadditive interaction between them? To answer this question, we examined phoneme

activation in DRC simulations with the words spat, spats and spate removed from its

lexicon, and one of these replaced with either its usual regular or an altered exceptional

pronunciation. Comparing spat and spats indicates the source of the length effect, and

comparing regular and exceptional pronunciations illuminates the exception effect.

First, Figure 4a illustrates the activation of phonemes for reading the word spat

when it was reinserted in the lexicon with its usual regular pronunciation (/sp{t/) and a

frequency of 50. The phonemes’ activation increases more quickly if they are earlier in the

pronunciation since they are produced by letters further left in the input and therefore

receive excitation from the nonlexical route sooner. Therefore, the last phoneme to exceed

criterion is the blank phoneme (dotted line) indicating the end of the pronunciation in

Position 5, which is supported by the blank letter in Position 5 of the input via the

nonlexical route. The model thus produced the correct pronunciation after 85 cycles.

The source of length effects is illuminated by comparison of Figures 4a and 4b.

Figure 4b uses the word spats instead of spat, also with regular pronunciation (/sp{ts/.

Since this word is longer, the sixth phoneme is the blank that is needed to complete the

pronunciation, and this receives activation from the nonlexical route when the sixth
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(blank) letter in the input is processed. This phoneme is activated more slowly than the

Position 5 phoneme that is the last to exceed the stopping criterion in Figure 4a. In fact,

the Position 6 blank phoneme in spats exceeds the stopping criterion on Cycle 92, and

this is when the pronunciation is output by the model.

The comparison between Figures 4a and 4c illustrates the source of the exception

effect. Figure 4c again uses the orthographic form spat, but with a pronunciation in the

lexicon that is irregular in the first phoneme (/Sp{t/). The consequence of this is that the

correct first phoneme (/S/, solid line) never receives activation from the nonlexical route

and receives inhibition from the now incorrect regular phoneme (/s/). Notably, although

it is the conflict between the two routes’ pronunciations that is intended to produce the

exception effect, the vast majority of the difference between the regular and exception

cases is contributed by the lack of nonlexical support, not the inhibition from the regular

phoneme. The correct phoneme is therefore more slowly activated than the blank fifth

phoneme, and does not reach the stopping criterion until the 100th cycle, when the model

produces the new correct pronunciation. Thus the exception effect occurs due to the

delaying of the irregular phoneme to be later than the final blank phoneme.

Figure 4d now combines the longer orthographic form spats with an irregular

pronunciation in the first phoneme. Again, there is a delay in the activation of the first

phoneme. The final blank phoneme is now produced by the sixth letter not the fifth

compared to Figure 4c. However, although the final blank phoneme reaches the stopping

criterion later, it does not reach criterion later than the irregular first phoneme, which

continues to reach criterion at Cycle 100, which is when the pronunciation is generated by

the model. Therefore, in the presence of a strong exception slowing, there is no further

slowing due to length. If there is any exception to this, it will be because the last blank

phoneme is generated so late that the exceptional phoneme has no influence on response

time; that is, for longer words, there may be a length effect due to the nonlexical route,
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but only in the absence of an exception effect due to the nonlexical route.

Figures 4e and 4f are designed to allow a similar examination of the number of

irregularities effect. In these, a further third position irregularity has been introduced into

the pronunciation in the lexicon. Note that in Table 5 we established that the model

predicts a cost of irregularity at this position with these parameters, and it is smaller than

that in earlier positions. In a similar fashion to the absent length effect, the irregularity in

Phoneme 3 slows the activation of that phoneme, but less so than the irregularity in first

position. Moreover, this must be the case if the position of irregularity effect is to obtain.

For both of these words then, the first phoneme is again the last to reach the stopping

criterion after 100 cycles, when they are pronounced.

Decision Rules and Exception Effects.

Given these incorrect effects arise in the model because of the interaction between

the nonlexical route and the decision rule for readiness of pronunciation, an alteration to

this decision rule might ameliorate the problem. An additive rule, comparing the sum of

phoneme activations to a stopping criterion, would give an effect of multiple irregularities.

However, this would probably create too large a facilitation from number of phonemes,

since a four phoneme word would have approximately 1.25 times the activation of a three

phoneme word, which would exceed the size of the letter length effect. An averaging

(arithmetic mean) rule would have a different problem: Since later phonemes lag in

activation, words with many phonemes will have lower average activation than those with

few, in contradiction to the facilitatory phonemes effect.

A product of activations rule would have similar problems to a sum rule, as taking

logarithms on both sides gives a stopping criterion rule that is sum of log activations

exceeds log criterion. The same logic applies to the use of a geometric mean rule rather

than an arithmetic mean rule. A more complex rule might better accommodate all the

effects, but this could involve an explicit adjustment for number of phonemes.
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Beyond the DRC

Modifications to the DRC.

The DRC model proposed by Coltheart et al. (2001) clearly has some difficulties in

accounting for the data under consideration here. However, this is not to say that there is

no cascaded model with an addressed-assembled dual-route structure that can account for

the data. It could yet be demonstrated that a modification to certain assumptions would

reveal a model capable of capturing the effects without changing the basic structure. This

can only be determined by further simulations. Candidate modifications suggested by the

evidence here involve changing the decision rule for pronunciation to accommodate

multiple irregularity effects; and adding perceptibility effects to the accumulation of letter

information, possibly at the expense of seriality in the nonlexical route to better model

position of irregularity. A modification suggested in part by evidence described elsewhere

(Adelman et al., 2006; Adelman & Brown, in press) is to replace frequency with

contextual diversity in the bias on word nodes.

Models other than the DRC.

There are of course other models that could be assessed in a fashion similar to that

used in the analysis of the DRC here. One candidate is the recent extension to the

connectionist dual-process model (Perry, Ziegler, & Zorzi, 2007) partially based on the

DRC; this model was published well after the optimizations described in this paper were

begun. Given that we have identified the stopping rule as a key component to be changed

in the DRC, the CDP+’s alternative mechanism will be of interest.

Parallel-distributed processing models (e.g., Plaut et al., 1996) might also be

assessed with optimization and model error regressions. There are a few ways, however, in

which such an analysis would be more difficult or less satisfactory than the one given here,

mostly centering on optimization. First, these models typically have more connections
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than the DRC and a training period, which make them slower to run. Second, most such

models have a random component, either in the initial weights, or the order of word

presentation (e.g., Harm & Seidenberg, 1999); it would therefore be necessary to have

several runs of the model to determine an average performance, or to treat these as

parameters themselves (cf. Zevin & Seidenberg, 2006). Third, the choice of distribution for

such random components would likely influence the results, even though such distributions

are not obviously parameters of the models. Fourth, some of the parameters that might be

optimized — number of hidden nodes, learning rate, momentum, etc. — map indirectly

onto the mechanisms of processing for reading words. Fifth, and more generally, because

the mechanism that is specified is at the level of learning, potential modifications need to

be at this level. To generate psychological understanding to motivate such potential

modifications will therefore require more analysis than when the on-line processing is

specified more directly. Nevertheless, as computing speed allows, analyses based on the

principles we have described will strongly constrain the development of these models.

Our discussion here does not exhaust all models to which the method might be

applied, but no further special problems are foreseeable with any other models.

Beyond these data

Of course, the method may also be extended to other data sets. To correctly

perform these analyses on other data sets, the optimal parameters issue must be once

again addressed: Parameters optimized for one data set will not be optimal for another,

not only because of trial-to-trial variation, but more importantly because of systematic

participant, item and other design factors. Such differences are important; with the

parameters given here, the pronunciation crietrion was reached by the DRC for fewer than

1% of the words from Andrews and Scarratt’s (1998) experimental nonwords (i.e., no

response was made at all for the others). This does not invalidate the parameters: It
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would be perfectly reasonable for one set of parameters to represent the strategy for a list

of words like Spieler and Balota’s (1997), and another to represent the strategy for lists

containing nonwords like Andrews and Scarratt’s.

Caveat: Individual differences.

The problematic effects found in our analyses here are fairly simple effects.

However, there is a further, and serious, concern when fitting complex models with

complex effects to data of the sort we have used. These data are averages over individuals,

for each of whom the parameters presumably differ. To achieve reasonable fits to

individual participants would require data of greater precision at an individual level,

which could only be achieved from a study in which participants provide several

observations for each word. If it were possible to evade or ameliorate problematic

repetition (and repetition interaction) effects, there would be several advantages to such

data. The first is simply that the data would be at the correct level of grain to match

prediction and therefore would not be susceptible to averaging artefacts (cf. Heathcote,

Brown, & Mewhort, 2002). Second, it permits true and strict testing of models with

lack-of-fit tests that do not rely upon knowledge of important variables, as an accurate

upper bound on R2 (or another fit measure) could be calculated from a saturated model,

which would generate estimates of expected fit for restricted models with fewer

parameters than items. Third, such data would permit data-led identification of

important variables by identifying individual items for which there is evidence of misfit;

that is, the data (with some non-model-specific intuition) could guide

hypothesis-generation. The combination of the detail of data with assessment that

rigorously examines effects of several models of several model families under the most

favorable conditions (parameters) has strong promise for theoretical progress in word

naming, and other areas where differences between words generate contrasts of interest.
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Footnotes

1According to Coltheart et al. (2001), this value should be based on the maximum

frequency on the lexicon, but it appears that this value has been hard-coded based on

some other lexicon than the one that Coltheart et al. currently use. We have followed

their implementation here.

2Every other component of the model is influenced by activations of other

components on the previous time tick.

3Analyses are based on 2,712 words because we typically discard “rev” on the

grounds that there were no correct response times in the corresponding lexical decision

data of Balota, Cortese, and Pilotti (1999), but this action was not taken until after the

optimization was complete in this instance; the changes this causes to the R2 values are of

the order of .01%.

4This method of controlling acoustic components is intended to extend that used in

Spieler and Balota’s (1997) analyses which used the major articulatory features of the first

phoneme, as it does not rely on there being no interactions between the effects of such

features. As in other investigations that have regressed out aspects of the first phoneme

for this purpose (to our knowledge, all investigations that have used mega-study data

[where mega is taken to refer to the number of words]) this does not control for influence

of subsequent phonemes.

5We use the CELEX (Baayen, Piepenbrock, & Gulikers, 1995) written frequency

because this is the source of the frequencies in the DRC model’s lexicon. This makes it

possible to assert that differences between the regression models and the DRC are not due

to the quality of frequency count.

6Note that optimizing for a single data set fixes the intercept and slope. This may

lead to a slight hypersensitivity for the detection of errors, but the effect will be small for

such a large number of items in the analysis, and in any case we will concentrate on strong
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effects.

7We excluded mitt from the frequency weighted analyses because the denominator

of the ratio was zero.

8We thank Marco Zorzi for bringing this variable to our attention.
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Table 1

Best parameters for the DRC and SRC models to fit Spieler & Balota (1997) naming RTs.

Parameter Best DRC Best SRC Parameter Best DRC Best SRC

activation rate .2806 .1780 frequency scale .0659 .0464

stopping criterion .3906 .4785 feature-letter excit. .0051 .0109

feature-letter inhib. -.1464 -.1351 letter-orthography excit. .0752 .0653

letter-orthography inhib. -.6361 -.5424 letter-letter inhib. .0000 .0000

letter decay .1119 .0764 orthography-phonology excit. .2475 .3307

orthography-letter excit. .3793 .3704 orthography-letter inhib. .0000 .0000

orthography-orthography inhib. -.0504 -.0101 orthography decay .0039 .0002

phonology-phoneme excit. .1344 .1442 phonology-phoneme inhib. .0000 .0000

phonology-orthography excit. .1666 .2081 phonology-phonology inhib. -.0802 -.0297

phonology decay .0027 .0002 phoneme-phonology excit. .0367 .0795

phoneme-phonology inhib. -.1393 -.1580 phoneme-phoneme inhib. -.1302 -.1496

phoneme-decay .0509 .0035 GPC strength .0441 —

GPC delay 10.0000 — GPC rate 16.0000 —

intercept 357.5082 359.1956 slope 1.2962 1.4756
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Data DRC DRC Error SRC SRC Error

Log Frequency -2.468 (0.145) *** -2.382 (0.040) *** -0.086 (0.145) -2.334 (0.036) *** -0.134 (0.147)

Number of Letters 3.917 (0.500) *** 4.707 (0.137) *** -0.789 (0.499) 3.687 (0.124) *** 0.230 (0.506)

Orthographic N -0.597 (0.072) *** -0.101 (0.020) *** -0.496 (0.072) *** -0.202 (0.018) *** -0.395 (0.073) ***

Log Frequency is the natural logarithm of (CELEX frequency plus one). Tests for comparison with zero: † p < .1; * p < .05; ** p < .01; *** p < .001.
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Data DRC DRC Error SRC SRC Error

Linear

Linear -2.710 (0.144) *** -2.630 (0.028) *** -0.080 (0.146) -2.351 (0.036) *** -0.359 (0.146) **

Quadratic

Linear -4.607 (0.533) *** -3.831 (0.102) *** -0.775 (0.542) -3.775 (0.132) *** -0.833 (0.543)

Quadratic 0.182 (0.049) *** 0.115 (0.009) *** 0.066 (0.050) 0.136 (0.012) *** 0.045 (0.050)

Cubic

Linear -1.887 (1.237) -4.355 (0.236) *** 2.468 (1.258) * -3.223 (0.307) *** 1.336 (1.261)

Quadratic -0.395 (0.241) 0.225 (0.046) *** -0.621 (0.245) * 0.019 (0.060) -0.414 (0.246) †

Cubic 0.035 (0.014) * -0.007 (0.003) * 0.042 (0.015) ** 0.007 (0.004) * 0.028 (0.015) †

Tests for comparison with zero: † p < .1; * p < .05; ** p < .01; *** p < .001.
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Data DRC DRC Error SRC SRC Error

Exception costs 8.155 (0.838) *** 8.137 (0.167) *** 0.617 (0.853) 0.730 (0.207) *** 7.425 (0.855) ***

Regulars

Linear -1.632 (1.336) -4.670 (0.267) *** 3.038 (1.360) * -3.220 (0.330) *** 1.588 (1.364)

Quadratic -0.411 (0.267) 0.321 (0.053) *** -0.731 (0.272) ** 0.025 (0.066) -0.436 (0.273)

Cubic 0.038 (0.016) * -0.012 (0.003) *** 0.050 (0.017) ** 0.007 (0.004) † 0.031 (0.017) †

Exceptions

Linear -8.104 (3.745) * -5.614 (0.748) *** -2.490 (3.814) -4.060 (0.925) *** -4.044 (3.825)

Quadratic 0.076 (0.653) 0.149 (0.131) -0.073 (0.665) 0.093 (0.161) -0.017 (0.667)

Cubic 0.028 (0.035) 0.006 (0.003) 0.021 (0.036) 0.005 (0.009) 0.023 (0.036)

Tests for comparison with zero: † p < .1; * p < .05; ** p < .01; *** p < .001. Exceptions are identified as

words that are ultimately parsed by the DRC’s nonlexical route in a way that supports a phoneme that

differs from the vocabulary pronunciation.
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Data DRC DRC Error SRC SRC Error

1 27.132 (2.863) *** 13.795 (0.521) *** 13.338 (2.927) *** 0.558 (0.714) 26.574 (2.924) ***

2 7.470 (1.050) *** 10.093 (0.191) *** -2.623 (1.073) * 0.617 (0.262) * 6.854 (1.073) ***

3 6.613 (1.449) *** 4.463 (0.264) *** 1.982 (1.481) 0.891 (0.361) * 5.723 (1.480) ***

4 1.259 (3.053) 1.631 (0.556) ** -0.372 (3.122) 1.345 (0.762) † -0.086 (3.119)

5 1.761 (6.626) -2.112 (1.207) † 3.874 (6.774) 0.232 (1.653) 1.530 (6.768)

Exceptions are identified as words that are ultimately parsed by the DRC’s nonlexical route in a way that supports

a phoneme that differs from the vocabulary pronunciation, coded by the position of that phoneme. Tests for

comparison with zero: † p < .1; * p < .05; ** p < .01; *** p < .001.



A
n
aly

zin
g

m
o
d
el

error
in

th
e

D
R

C
55

T
ab

le
6

R
im

e
co

n
sisten

cy
eff

ects
(regressio

n
pa

ra
m

eters
in

m
s,

sta
n
d
a
rd

erro
rs

in
pa

ren
th

eses)

Data DRC DRC Error SRC SRC Error

By types -5.571 (1.588) *** -0.663 (0.289) * -4.908 (1.624) ** -0.284 (0.397) -5.286 (1.623) **

By tokens -2.322 (1.091) * -0.546 (0.199) ** -1.776 (1.116) -0.062 (0.272) -2.259 (1.114) *

Log-weighted -5.240 (1.542) *** -0.661 (0.281) * -4.579 (1.578) -0.231 (0.385) -5.008 (1.576) **

Each ratio is entered is a separate analysis. Tests for comparison with zero: † p < .1; * p < .05; ** p < .01; *** p < .001.
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Data DRC DRC Error SRC SRC Error

Orthographic N -0.151 (0.136) 0.058 (0.025) * -0.209 (0.140) 0.009 (0.032) -0.160 (0.139)

Phonographic N -0.586 (0.165) *** -0.177 (0.030) *** -0.409 (0.169) * -0.108 (0.039) ** -0.478 (0.168) **

Phonological N 0.032 (0.029) 0.017 (0.005) ** 0.014 (0.030) -0.128 (0.007) *** 0.160 (0.030) ***

Tests for comparison with zero: † p < .1; * p < .05; ** p < .01; *** p < .001.
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Data DRC DRC Error SRC SRC Error

1 8.706 (2.039) *** 0.268 (0.294) 8.438 (2.065) *** -3.133 (0.502) *** 11.838 (2.074) ***

2 -2.486 (0.987) * -0.157 (0.143) -2.329 (0.999) * 0.219 (0.243) -2.705 (1.003) **

3 0.491 (1.088) 0.206 (0.157) 0.284 (1.101) 0.096 (0.268) 0.395 (1.106)

4 -0.437 (1.818) -0.027 (0.263) -0.411 (1.841) 1.412 (0.448) ** -1.850 (1.849)

5 -6.451 (3.661) † -2.210 (0.529) *** -4.241 (3.706) 6.054 (0.903) *** -12.505 (3.723) ***

Whammies are identified in regular words that are partially parsed by the DRC’s nonlexical route in a way

that supports an incorrect phoneme, by the position of that phoneme. Tests for comparison with zero: †

p < .1; * p < .05; ** p < .01; *** p < .001.
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Table 9

Exception and whammying costs by position (regression parameters in ms, standard errors

in parentheses)

Data DRC DRC Error

Whammied Regulars

1 8.877 ( 2.034) *** 0.237 ( 0.294) 8.640 ( 2.058) ***

2 -2.480 ( 0.983) * -0.151 ( 0.142) -2.329 ( 0.995) *

3 0.477 ( 1.084) 0.212 ( 0.157) 0.265 ( 1.097)

4 -0.463 ( 1.812) -0.017 ( 0.262) -0.446 ( 1.834)

5 -6.506 ( 3.649) † -2.219 ( 0.527) *** -4.318 ( 3.692)

Unwhammied Exceptions

1 35.933 ( 4.267) *** 12.726 ( 0.617) *** 23.207 ( 4.318) ***

2 2.658 ( 1.687) 10.769 ( 0.244) *** -8.111 ( 1.707) ***

3 -1.636 ( 2.301) 8.898 ( 0.332) *** -10.534 ( 2.328) ***

4 -3.538 ( 4.123) 7.701 ( 0.596) *** -11.238 ( 4.171) **

5 -11.509 (14.931) 13.733 ( 2.157) *** -25.242 (15.109) †

Whammied Exceptions

1 20.967 ( 3.861) *** 12.078 ( 0.558) *** 8.889 ( 3.907) *

2 3.397 ( 1.774) * 9.937 ( 0.256) *** -5.968 ( 1.795) ***

3 5.755 ( 2.344) * 8.095 ( 0.339) *** -2.340 ( 2.372)

4 -6.202 ( 4.923) 8.428 ( 0.711) *** -14.630 ( 4.982) **

5 -4.604 ( 7.478) 7.139 ( 1.080) *** -11.743 ( 7.567)

Multiple 10.440 ( 2.571) *** 0.349 ( 0.371) 10.091 ( 2.601) ***

Whammies are identified in words that are partially parsed by the DRC’s nonlexical route in a way

that temporarily supports a phoneme that differs from the regular. Exceptions are identified as

words that are ultimately parsed by the DRC’s nonlexical route in a way that supports a phoneme

that differs from the vocabulary pronunciation. Position is determined by phoneme. Tests for

comparison with zero: † p < .1; * p < .05; ** p < .01; *** p < .001.
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Figure Captions

Figure 1. Effect of word frequency (covariate adjusted) on response time in DRC, SRC,

and data after covariates. Error bars show ±1SE, based on residual sum-of-squares from

the model with covariates. DRC/SRC response times are based on best-fitting intercept

and slope for the data set. Bands are taken on the basis of the Napierian logarithm of

CELEX written frequency to the nearest third; number of items in a band is at the base

of the figure.

Figure 2. Effect of word frequency by regularity on response time in DRC and data after

covariates. DRC response times based on best-fitting intercept and slope for the data set.

Bands are taken on the basis of the Napierian logarithm of CELEX written frequency to

the nearest third. Exceptions are identified as words that are ultimately parsed by the

DRC’s nonlexical route in a way that supports a phoneme that differs from the

vocabulary pronunciation.

Figure 3. Effect of word frequency by regularity on response time in SRC and data after

covariates. SRC response times based on best-fitting intercept and slope for the data set.

Bands are taken on the basis of the Napierian logarithm of CELEX written frequency to

the nearest third. Exceptions are identified as words that are ultimately parsed by the

DRC’s nonlexical route in a way that supports a phoneme that differs from the

vocabulary pronunciation.

Figure 4. Phoneme activation in the DRC with best parameters for critical phonemes over

the duration of naming for 6 words inserted in the lexicon of the DRC with frequency 50.

(Spat, spats, and spate were removed from the lexicon for this exposition.) (a), (c) and (e)

use the four letter orthographic form spat. (b), (d) and (f) use the five letter orthographic

form spats. (a) and (b) have regular pronunciations. (c) and (d) are irregular in the first
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phoneme. (e) and (f) have irregularities in both first and third phonemes.
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