11 research outputs found

    Evidence for the predictive remapping of visual attention

    Get PDF
    When attending an object in visual space, perception of the object remains stable despite frequent eye movements. It is assumed that visual stability is due to the process of remapping, in which retinotopically organized maps are updated to compensate for the retinal shifts caused by eye movements. Remapping is predictive when it starts before the actual eye movement. Until now, most evidence for predictive remapping has been obtained in single cell studies involving monkeys. Here, we report that predictive remapping affects visual attention prior to an eye movement. Immediately following a saccade, we show that attention has partly shifted with the saccade (Experiment 1). Importantly, we show that remapping is predictive and affects the locus of attention prior to saccade execution (Experiments 2 and 3): before the saccade was executed, there was attentional facilitation at the location which, after the saccade, would retinotopically match the attended location

    Bottlenecks of motion processing during a visual glance: the leaky flask model

    Get PDF
    YesWhere do the bottlenecks for information and attention lie when our visual system processes incoming stimuli? The human visual system encodes the incoming stimulus and transfers its contents into three major memory systems with increasing time scales, viz., sensory (or iconic) memory, visual short-term memory (VSTM), and long-term memory (LTM). It is commonly believed that the major bottleneck of information processing resides in VSTM. In contrast to this view, we show major bottlenecks for motion processing prior to VSTM. In the first experiment, we examined bottlenecks at the stimulus encoding stage through a partial-report technique by delivering the cue immediately at the end of the stimulus presentation. In the second experiment, we varied the cue delay to investigate sensory memory and VSTM. Performance decayed exponentially as a function of cue delay and we used the time-constant of the exponential-decay to demarcate sensory memory from VSTM. We then decomposed performance in terms of quality and quantity measures to analyze bottlenecks along these dimensions. In terms of the quality of information, two thirds to three quarters of the motion-processing bottleneck occurs in stimulus encoding rather than memory stages. In terms of the quantity of information, the motion-processing bottleneck is distributed, with the stimulus-encoding stage accounting for one third of the bottleneck. The bottleneck for the stimulus-encoding stage is dominated by the selection compared to the filtering function of attention. We also found that the filtering function of attention is operating mainly at the sensory memory stage in a specific manner, i.e., influencing only quantity and sparing quality. These results provide a novel and more complete understanding of information processing and storage bottlenecks for motion processing.Supported by R01 EY018165 and P30 EY007551 from the National Institutes of Health (NIH)

    P300 response modulation reflects breaches of non-probabilistic expectations

    No full text
    In oddball paradigms, infrequent stimuli elicit larger P300 event related potentials (ERPs) than frequent ones. One hypothesis is that P300 modulations reflect the degree of “surprise” associated with unexpected stimuli. That is the P300 represents how unlikely the stimulus is and this signal is then used to update the observer’s expectations. It could be hypothesized that P300 is modulated by any factor affecting an observer’s expectations, not only target probability. Alternatively, the P300 may reflect an evaluative process engaged whenever a discrepancy between task context and sensory inputs arises, irrespective of the latter probability. In previous ERP studies, stimulus probability was often the only determinant of task set confounding the effects of stimulus probability and set stimulus discrepancy. In this study, we used a speeded luminance detection task. The target was preceded by a central cue that predicted its location. The probability that the target was valid, i.e. would appear at the cued location was manipulated by varying the reliability of the cue. Reaction times were modulated by probabilistic expectations based on cue reliability and target validity while P300 was affected by target validity only. We conclude that increased P300 amplitude reflects primarily breaches of non-probabilistic expectations, rather than target probability. © 2020, The Author(s)
    corecore