437 research outputs found
Using Speculative Computation and Parallelizing Techniques to Improve Scheduling of Control based Designs
partially_open5Recent research results have seen the application of parallelizing techniques to high-level synthesis. In particular, the effect of speculative code transformations on mixed control-data flow designs has demonstrated effective results on schedule lengths. In this paper we first analyze the use of the control and data dependence graph as an intermediate representation that provides the possibility of extracting the maximum parallelism. Then we analyze the scheduling problem by formulating an approach based on Integer Linear Programming (ILP) to minimize the number of control steps given the amount of resources. We improve the already proposed ILP scheduling approaches by introducing a new conditional resource sharing constraint which is then extended to the case of speculative computation. The ILP formulation has been solved by using a Branch and Cut framework which provides better results than standard branch and bound techniquesR. Cordone; F. Ferrandi; G. Palermo; M. Santambrogio; D. SciutoR., Cordone; Ferrandi, Fabrizio; Palermo, Gianluca; Santambrogio, MARCO DOMENICO; Sciuto, Donatell
Implementation of a sensorized neonatal head model for gynechological training
During labor it is very important to know the exact position and orientation of the fetal head when descending the birth canal. Indeed, incorrect evaluations may lead to dangerous situations for both the infant and the mother. Usually, gynecologists and midwives rely on their experience to determine the head position and to evaluate the risk level of each delivery. In this context, it is essential to train new physicians and midwives to correctly manage different types of delivery. Here, we present the design and implementation of a realistic sensorized neonatal head that could be used on low-cost birth simulators for training and evaluation of residents and midwifery students
Molecular dynamics simulation of aqueous solutions of 26-unit segments of p(NIPAAm) and of p(NIPAAm) "doped" with amino acid based comonomers
We have performed 75-ns molecular dynamics (MD) simulations of aqueous solutions of a 26-unit NIPAAm
oligomer at two temperatures, 302 and 315 K, below and above the experimentally determined lower critical
solution temperature (LCST) of p(NIPAAm). We have been able to show that at 315 K the oligomer assumes
a compact form, while it keeps a more extended form at 302 K. A similar behavior has been demonstrated
for a similar NIPAAm oligomer, where two units had been substituted by methacryloyl-l-valine (MAVA)
comonomers, one of them being charged and one neutral. For another analogous oligomer, where the same
units had been substituted by methacryloyl-l-leucine (MALEU) comonomers, no transition from the extended
to the more compact conformation has been found within the same simulation time. Statistical analysis of the
trajectories indicates that this transition is related to the dynamics of the oligomer backbone, and to the formation
of intramolecular hydrogen bonds and water-bridges between distant units of the solute. In the MAVA case,
we have also evidenced an important role of the neutral MAVA comonomer in stabilizing the compact coiled
structure. In the MALEU case, the corresponding comonomer is not equally efficacious and, possibly, is
even hindering the readjustment of the oligomer backbone. Finally the self-diffusion coefficient of water
molecules surrounding the oligomers at the two temperatures for selected relevant times is observed to
characteristically depend on the distance from the solute molecules
Transcriptional activation of the miR-17-92 cluster is involved in the growth-promoting effects of MYB in human Ph-positive leukemia cells.
MicroRNAs, non-coding regulators of gene expression, are likely to function as important downstream effectors of many transcription factors including MYB. Optimal levels of MYB are required for transformation/maintenance of BCR-ABL-expressing cells. We investigated whether MYB silencing modulates microRNA expression in Philadelphia-positive (Ph+) leukemia cells and if MYB-regulated microRNAs are important for the MYB addiction of these cells. Thirty-five microRNAs were modulated by MYB silencing in lymphoid and erythromyeloid chronic myeloid leukemia-blast crisis BV173 and K562 cells; 15 of these were concordantly modulated in both lines. We focused on the miR-17-92 cluster because of its oncogenic role in tumors and found that: i) it is a direct MYB target; ii) it partially rescued the impaired proliferation and enhanced apoptosis of MYB-silenced BV173 cells. Moreover, we identified FRZB, a Wnt/ÎČ-catenin pathway inhibitor, as a novel target of the miR-17-92 cluster. High expression of MYB in blast cells from 2 Ph+leukemia patients correlated positively with the miR-17-92 cluster and inversely with FRZB. This expression pattern was also observed in a microarray dataset of 122 Ph+acute lymphoblastic leukemias. In vivo experiments in NOD scid gamma mice injected with BV173 cells confirmed that FRZB functions as a Wnt/ÎČ-catenin inhibitor even as they failed to demonstrate that this pathway is important for BV173-dependent leukemogenesis. These studies illustrate the global effects of MYB expression on the microRNAs profile of Ph+cells and supports the concept that the MYB addiction of these cells is, in part, caused by modulation of microRNA-regulated pathways affecting cell proliferation and survival. Copyright© 2019 Ferrata Storti Foundation
Altered inflammasome machinery as a key player in the perpetuation of Rett syndrome oxinflammation
Rett syndrome (RTT) is a progressive neurodevelopmental disorder mainly caused by mutations in the X-linked MECP2 gene. RTT patients show multisystem disturbances associated with an oxinflammatory status. Inflammasomes are multi-protein complexes, responsible for host immune responses against pathogen infections and redox-related cellular stress. Assembly of NLRP3/ASC inflammasome triggers pro-caspase-1 activation, thus, resulting in IL-1ÎČ and IL-18 maturation. However, an aberrant activation of inflammasome system has been implicated in several human diseases. Our aim was to investigate the possible role of inflammasome in the chronic subclinical inflammatory condition typical of RTT, by analyzing this complex in basal and lipopolysaccharide (LPS)+ATP-stimulated primary fibroblasts, as well as in serum from RTT patients and healthy volunteers. RTT cells showed increased levels of nuclear p65 and ASC proteins, pro-IL-1ÎČ mRNA, and NLRP3/ASC interaction in basal condition, without any further response upon the LPS + ATP stimuli. Moreover, augmented levels of circulating ASC and IL-18 proteins were found in serum of RTT patients, which are likely able to amplify the inflammatory response. Taken together, our findings suggest that RTT patients exhibited a challenged inflammasome machinery at cellular and systemic level, which may contribute to the subclinical inflammatory state feedback observed in this pathology
Spatial-Related Community Structure and Dynamics in Phytoplankton of the Ross Sea, Antarctica
The Ross Sea exhibits the largest continental shelf and it is considered to be the most productive region in Antarctica, with phytoplankton communities that have so far been considered to be driven by the seasonal dynamics of the polynya, producing the picture of what is considered as the classical Antarctic food web. Nevertheless, the Ross Sea is made up of a complex mosaic of sub-systems, with physical, chemical, and biological features that change on different temporal and spatial scales. Thus, we investigated the phytoplankton community structure of the Ross Sea with a spatial scale, considering the different ecological sub-systems of the region. The total phytoplankton biomass, maximum quantum efficiency (Fv/Fm), size classes, and main functional groups were analyzed in relation to physicalâchemical properties of the water column during the austral summer of 2017. Data from our study showed productivity differences between polynyas and other areas, with high values of biomass in Terra Nova Bay (up to 272 mg chl a mâ2) and the south-central Ross Sea (up to 177 mg chl a mâ2) that contrast with the HNLC nature of the off-shore waters during summer. Diatoms were the dominant group in all the studied subsystems (relative proportion â„ 50%) except the southern one, where they coexisted with haptophytes with a similar percentage. Additionally, the upper mixed layer depth seemed to influence the level of biomass rather than the dominance of different functional groups. However, relatively high percentages of dinoflagellates (âŒ30%) were observed in the area near Cape Adare. The temporal variability observed at the repeatedly sampled stations differed among the sub-systems, suggesting the importance of Long-Term Ecological Research (L-TER) sites in monitoring and studying the dynamics of such an important system for the global carbon cycle as the Ross Sea. Our results provide new insights into the spatial distribution and structure of phytoplankton communities, with different sub-systems following alternative pathways for primary production, identifiable by the use of appropriate sampling scales
The Spectrum of Integrated Millimeter Flux of the Magellanic Clouds and 30-Doradus from TopHat and DIRBE Data
We present measurements of the integrated flux relative to the local
background of the Large and Small Magellanic Clouds and the region 30-Doradus
(the Tarantula Nebula) in the LMC in four frequency bands centered at 245, 400,
460, and 630 GHz, based on observations made with the TopHat telescope. We
combine these observations with the corresponding measurements for the DIRBE
bands 8, 9, and 10 to cover the frequency range 245 - 3000 GHz (100 - 1220
micrometers) for these objects. We present spectra for all three objects and
fit these spectra to a single-component greybody emission model and report
best-fit dust temperatures, optical depths, and emissivity power-law indices,
and we compare these results with other measurements in these regions and
elsewhere. Using published dust grain opacities, we estimate the mass of the
measured dust component in the three regions.Comment: 41 pages, 4 figures. Accepted for publication in Astrophysical
Journa
Subsurface life can modify volatile cycling on a planetary scale
The past decade of environmental microbiology has revealed that subsurface environments, both marine and continental, harbor one of the largest ecosystems of our planet, with diversity and biomass rivaling those of the surface. In addition, subsurface life has been recently shown to contribute significantly to the planetâs biogeochemistry, with microbial activity potentially playing an important role in controlling the flux and composition of volatiles recycled between the Earthâs surface and interior, which has broad implications for the search for life beyond our planet. Current efforts to discover extraterrestrial life are focused on planetary bodies with largely inhospitable surfaces, such as Mars, Venus, Europa, Titan, and Enceladus. In these locations, subsurface environments might provide niches of habitability, making the study of deep microbial life a priority for future astrobiological missions. Understanding how volatile elements are exchanged between planetary surfaces and interiors and the role of a subsurface biosphere in altering their composition and flux might provide a tractable target for defining planetary habitability and the detection of subsurface life forms.Fil: Giovanelli, D.. UniversitĂ degli Studi di Napoli Federico II; Italia. Tokyo Institute of Technology; JapĂłn. Rutgers University; Estados Unidos. Consiglio Nazionale delle Ricerche; Italia. Woods Hole Oceanographic Institution; Estados UnidosFil: Barry, P. H.. Woods Hole Oceanographic Institution; Estados UnidosFil: Bekaert, D. V.. Woods Hole Oceanographic Institution; Estados UnidosFil: Chiodi, Agostina Laura. Consejo Nacional de Investigaciones CientĂficas y TĂ©cnicas. Centro CientĂfico TecnolĂłgico Conicet - Salta. Instituto de Bio y Geociencias del NOA. Universidad Nacional de Salta. Facultad de Ciencias Naturales. Museo de Ciencias Naturales. Instituto de Bio y Geociencias del NOA; ArgentinaFil: Cordone, A.. UniversitĂ degli Studi di Napoli Federico II; ItaliaFil: Covone, G.. UniversitĂ degli Studi di Napoli Federico II; Italia. Istituto Nazionale di Astrofisica; Italia. Istituto Nazionale di Fisica Nucleare; ItaliaFil: Jessen, G.. Universidad Austral de Chile; ChileFil: Lloyd, K.. University of Tennessee; Estados UnidosFil: de Moor, J. M.. Universidad Nacional; Costa RicaFil: Morrison, S. M.. Carnegie Institution For Science; Estados UnidosFil: Schrenk, M. O.. Michigan State University; Estados UnidosFil: Vitale Brovarone, A.. Alma Mater Studiorum Universit`a Di Bologna; Italia. Sorbonne University; Francia. Museum National dâHistoire Naturelle; Franci
- âŠ