480 research outputs found

    Kalman-filter control schemes for fringe tracking. Development and application to VLTI/GRAVITY

    Full text link
    The implementation of fringe tracking for optical interferometers is inevitable when optimal exploitation of the instrumental capacities is desired. Fringe tracking allows continuous fringe observation, considerably increasing the sensitivity of the interferometric system. In addition to the correction of atmospheric path-length differences, a decent control algorithm should correct for disturbances introduced by instrumental vibrations, and deal with other errors propagating in the optical trains. We attempt to construct control schemes based on Kalman filters. Kalman filtering is an optimal data processing algorithm for tracking and correcting a system on which observations are performed. As a direct application, control schemes are designed for GRAVITY, a future four-telescope near-infrared beam combiner for the Very Large Telescope Interferometer (VLTI). We base our study on recent work in adaptive-optics control. The technique is to describe perturbations of fringe phases in terms of an a priori model. The model allows us to optimize the tracking of fringes, in that it is adapted to the prevailing perturbations. Since the model is of a parametric nature, a parameter identification needs to be included. Different possibilities exist to generalize to the four-telescope fringe tracking that is useful for GRAVITY. On the basis of a two-telescope Kalman-filtering control algorithm, a set of two properly working control algorithms for four-telescope fringe tracking is constructed. The control schemes are designed to take into account flux problems and low-signal baselines. First simulations of the fringe-tracking process indicate that the defined schemes meet the requirements for GRAVITY and allow us to distinguish in performance. In a future paper, we will compare the performances of classical fringe tracking to our Kalman-filter control.Comment: 17 pages, 8 figures, accepted for publication in A&

    First L-band Interferometric Observations of a Young Stellar Object: Probing the Circumstellar Environment of MWC 419

    Get PDF
    We present spatially-resolved K- and L-band spectra (at spectral resolution R = 230 and R = 60, respectively) of MWC 419, a Herbig Ae/Be star. The data were obtained simultaneously with a new configuration of the 85-m baseline Keck Interferometer. Our observations are sensitive to the radial distribution of temperature in the inner region of the disk of MWC 419. We fit the visibility data with both simple geometric and more physical disk models. The geometric models (uniform disk and Gaussian) show that the apparent size increases linearly with wavelength in the 2-4 microns wavelength region, suggesting that the disk is extended with a temperature gradient. A model having a power-law temperature gradient with radius simultaneously fits our interferometric measurements and the spectral energy distribution data from the literature. The slope of the power-law is close to that expected from an optically thick disk. Our spectrally dispersed interferometric measurements include the Br gamma emission line. The measured disk size at and around Br gamma suggests that emitting hydrogen gas is located inside (or within the inner regions) of the dust disk.Comment: Accepted for publication in Ap

    Integration of the atmospheric fluctuations in a dual-field optical interferometer: the short exposure regime

    Full text link
    Spatial phase-referencing in dual-field optical interferometry is reconsidered. Our analysis is based on the 2-sample variance of the differential phase between target and reference star. We show that averaging over time of the atmospheric effects depends on this 2-sample phase variance (Allan variance) rather than on the true variance. The proper expression for fringe smearing beyond the isoplanatic angle is derived. With simulations of atmospheric effects, based on a Paranal turbulence model, we show how the performances of a dual-field optical interferometer can be evaluated in a diagram 'separation angle' versus 'magnitude of faint object'. In this diagram, a domain with short exposure is found to be most useful for interferometry, with about the same magnitude limits in the H and K bands. With star counts from a Galaxy model, we evaluate the sky coverage for differential astrometry and detection of exoplanets, i.e. likelihood of faint reference stars in the vicinity of a bright target. With the 2mass survey, we evaluate sky coverage for phase-referencing, i.e. avaibility of a bright enough star for main delay tracking in the vicinity of any target direction.Comment: 9 pages, 8 figures, accepted for publication in A&

    Primary mirror dynamic disturbance models for TMT: vibration and wind

    Get PDF
    The principal dynamic disturbances acting on a telescope segmented primary mirror are unsteady wind pressure (turbulence) and narrowband vibration from rotating equipment. Understanding these disturbances is essential for the design of the segment support assembly (SSA), segment actuators, and primary mirror control system (M1CS). The wind disturbance is relatively low frequency, and is partially compensated by M1CS; the response depends on the control bandwidth and the quasi-static stiffness of the actuator and SSA. Equipment vibration is at frequencies higher than the M1CS bandwidth; the response depends on segment damping, and the proximity of segment support resonances to dominant vibration tones. We present here both disturbance models and parametric response. Wind modeling is informed by CFD and based on propagation of a von Karman pressure screen. The vibration model is informed by analysis of accelerometer and adaptive optics data from Keck. This information is extrapolated to TMT and applied to the telescope structural model to understand the response dependence on actuator design parameters in particular. Whether the vibration response or the wind response is larger depends on these design choices; "soft" (e.g. voice-coil) actuators provide better vibration reduction but require high servo bandwidth for wind rejection, while "hard" (e.g. piezo-electric) actuators provide good wind rejection but require damping to avoid excessive vibration transmission to the primary mirror segments. The results for both nominal and worst-case disturbances and design parameters are incorporated into the TMT actuator performance assessment

    Stellar and Molecular Radii of a Mira Star: First Observations with the Keck Interferometer Grism

    Get PDF
    Using a new grism at the Keck Interferometer, we obtained spectrally dispersed (R ~ 230) interferometric measurements of the Mira star R Vir. These data show that the measured radius of the emission varies substantially from 2.0-2.4 microns. Simple models can reproduce these wavelength-dependent variations using extended molecular layers, which absorb stellar radiation and re-emit it at longer wavelengths. Because we observe spectral regions with and without substantial molecular opacity, we determine the stellar photospheric radius, uncontaminated by molecular emission. We infer that most of the molecular opacity arises at approximately twice the radius of the stellar photosphere.Comment: 12 pages, including 3 figures. Accepted by ApJ

    Thermoreflectance investigation of the antiferromagnetic and paramagnetic phases of Cr

    Get PDF
    Thermoreflectance measurements have been performed on Cr single crystals at several temperatures above and below the NĂ©el temperature. We observe dramatic changes induced by the magnetic phase transition. In contrast, static optical data fail to show appreciable differences in the (0.5-5.0)-eV photon-energy range. Magnetic ordering gives rise to the disappearance of transitions involving specific regions of the Fermi surface. New critical-point absorptions appear at the boundaries of the new Brillouin zone in antiferromagnetic Cr. Most of the observed experimental features have been identified by comparison with recent band-structure calculations

    QUANTITATIVE ASSESSMENT OF CAMPYLOBACTER SPP. ON POULTRY CARCASSES

    Get PDF
    Campylobacter spp. are bacterial pathogens associated with human gastroenteritis worldwide. In Europe, campylobacteriosis is one of the leading food-borne bacterial diseases and the consumption of poultry meats is suspected to be one of the major causes of illness. The aim of our research was to determine the number of Campylobacter spp. in poultry carcasses and in poultry meat samples during their storage till to retail markets. The study was conducted from February 2009 to February 2010 at slaughterhouse in Veneto region, followed by a test of fresh poultry meat placed on the market for sale. A total of 90 poultry carcass and 90 samples of poultry meat were examined. The quantitative examination resulted in Campylobacter spp. counts (mean): for carcasses between 2,0 ∙101 ufc/g and 1,5 ∙103 ufc/g (4,2 ∙102) and poultry meat between 2,0 ∙101 ufc/g and 3,7 ∙102 ufc/g (8,1 ∙101). The majority of isolates were classified as Campylobacter jejuni (58,3%), Campylobacter coli (22,9%) or Arcobacter cryaerophilus (4,2%). Acknowledgments: The project was funded with grants from Fondazione Cariverona 2007

    Exploring the inner region of Type 1 AGNs with the Keck interferometer

    Full text link
    The exploration of extragalactic objects with long-baseline interferometers in the near-infrared has been very limited. Here we report successful observations with the Keck interferometer at K-band (2.2 um) for four Type 1 AGNs, namely NGC4151, Mrk231, NGC4051, and the QSO IRAS13349+2438 at z=0.108. For the latter three objects, these are the first long-baseline interferometric measurements in the infrared. We detect high visibilities (V^2 ~ 0.8-0.9) for all the four objects, including NGC4151 for which we confirm the high V^2 level measured by Swain et al.(2003). We marginally detect a decrease of V^2 with increasing baseline lengths for NGC4151, although over a very limited range, where the decrease and absolute V^2 are well fitted with a ring model of radius 0.45+/-0.04 mas (0.039+/-0.003 pc). Strikingly, this matches independent radius measurements from optical--infrared reverberations that are thought to be probing the dust sublimation radius. We also show that the effective radius of the other objects, obtained from the same ring model, is either roughly equal to or slightly larger than the reverberation radius as a function of AGN luminosity. This suggests that we are indeed partially resolving the dust sublimation region. The ratio of the effective ring radius to the reverberation radius might also give us an approximate probe for the radial structure of the inner accreting material in each object. This should be scrutinized with further observations.Comment: accepted for publication in A&A Letter

    The Palomar Testbed Interferometer

    Get PDF
    The Palomar Testbed Interferometer (PTI) is a long-baseline infrared interferometer located at Palomar Observatory, California. It was built as a testbed for interferometric techniques applicable to the Keck Interferometer. First fringes were obtained in July 1995. PTI implements a dual-star architecture, tracking two stars simultaneously for phase referencing and narrow-angle astrometry. The three fixed 40-cm apertures can be combined pair-wise to provide baselines to 110 m. The interferometer actively tracks the white-light fringe using an array detector at 2.2 um and active delay lines with a range of +/- 38 m. Laser metrology of the delay lines allows for servo control, and laser metrology of the complete optical path enables narrow-angle astrometric measurements. The instrument is highly automated, using a multiprocessing computer system for instrument control and sequencing.Comment: ApJ in Press (Jan 99) Fig 1 available from http://huey.jpl.nasa.gov/~bode/ptiPicture.html, revised duging copy edi

    Servo design and analysis for the Thirty Meter Telescope primary mirror actuators

    Get PDF
    The Thirty Meter Telescope has 492 primary mirror segments, each incorporated into a Primary Segment Assembly (PSA), each of which in turn has three actuators that control piston, tip, and tilt, for a total of 1476 actuators. Each actuator has a servo loop that controls small motions (nanometers) and large motions (millimeters). Candidate actuators were designed and tested that fall into the categories of "hard" and "soft," depending on the offload spring stiffness relative to the PSA structural stiffness. Dynamics models for each type of actuator are presented, which respectively use piezo-electric transducers and voice coils. Servo design and analysis are presented that include assessments of stability, performance, robustness, and control structure interaction. The analysis is presented for a single PSA on a rigid base, and then using Zernike approximations the analysis is repeated for 492 mirror segments on a flexible mirror cell. Servo requirements include low-frequency stiffness, needed for wind rejection; reduced control structure interaction, specified by a bound on the sensitivity function; and mid-frequency damping, needed to reduce vibration transmission. The last of these requirements, vibration reduction, was found to be an important distinguishing characteristic for actuator selection. Hard actuators have little inherent damping, which is improved using PZT shunt circuits and force feedback, but still these improvements were found to result in less damping than is provided by the soft actuator. Results of the servo analysis were used for an actuator down-select study
    • 

    corecore