15 research outputs found
Infralimbic EphB2 Modulates Fear Extinction in Adolescent Rats
Adolescent rats are prone to impaired fear extinction, suggesting that mechanistic differences in extinction could exist in adolescent and adult rats. Since the infralimbic cortex (IL) is critical for fear extinction, we used PCR array technology to identify gene expression changes in IL induced by fear extinction in adolescent rats. Interestingly, the ephrin type B receptor 2 (EphB2), a tyrosine kinase receptor associated with synaptic development, was downregulated in IL after fear extinction. Consistent with the PCR array results, EphB2 levels of mRNA and protein were reduced in IL after fear extinction compared with fear conditioning, suggesting that EphB2 signaling in IL regulates fear extinction memory in adolescents. Finally, reducing EphB2 synthesis in IL with shRNA accelerated fear extinction learning in adolescent rats, but not in adult rats. These findings identify EphB2 in IL as a key regulator of fear extinction during adolescence, perhaps due to the increase in synaptic remodeling occurring during this developmental phase
Voluntary Wheel Running Reduces Vesicle Development in an Endometriosis Animal Model Through Modulation of Immune Parameters
IntroductionEndometriosis is a chronic gynecological disorder characterized by the growth of endometrial glands and stroma outside the endometrial cavity producing inflammation and pain. Previously we demonstrated that modulation of the hypothalamic pituitary adrenal (HPA) axis exacerbates the development and severity of this condition. A physically active lifestyle has been shown to confer health benefits in many chronic conditions by potentially acting as a stress buffer, thus we hypothesized that voluntary physical exercise can “realign/reset” the HPA axis resulting in reduced endometriosis symptoms in an animal model.MethodsEndometriosis was induced in female Sprague Dawley rats by implanting uterine tissue next to the intestinal mesentery on day 0. Sham controls received sutures only. One group of endometriosis animals had access to a running wheel for 2 weeks prior to endometriosis induction until time of sacrifice at day 60. Sham and endometriosis controls received no exercise. All animals were examined for developed vesicles which were collected and measured. Uterine tissue was analyzed for cellular infiltration. Brain, liver, spleen, adrenal glands, leg muscles, and fat were collected, along with peritoneal fluid and blood.ResultsEndometriosis animals developed vesicles in 86.96% of the implants with significantly increased mesenteric fat compared to sham (p &lt; 0.05). Exposure to exercise significantly decreased the size (p &lt; 0.01) and number (p &lt; 0.05) of vesicles that developed, as well as the mesenteric fat (p &lt; 0.01). Exercised animals had higher levels of lactoferrin in peritoneal fluid, and decreased serum fractalkine and leptin. Exercise significantly increased estrogen alpha receptor expression levels (p &lt; 0.01), while significantly decreasing estrogen receptor beta expression (p &lt; 0.01) and macrophage infiltration (p &lt; 0.05) in vesicles compared to non- exercised animals.ConclusionsOur results suggest that voluntary physical activity might protect against endometriosis and alleviate the associated inflammation via immune modulation of the HPA axis. This offers the potential for further exploration of exercise as a complementary therapy in endometriosis patients.</jats:sec
Data_Sheet_1_Voluntary Wheel Running Reduces Vesicle Development in an Endometriosis Animal Model Through Modulation of Immune Parameters.PDF
IntroductionEndometriosis is a chronic gynecological disorder characterized by the growth of endometrial glands and stroma outside the endometrial cavity producing inflammation and pain. Previously we demonstrated that modulation of the hypothalamic pituitary adrenal (HPA) axis exacerbates the development and severity of this condition. A physically active lifestyle has been shown to confer health benefits in many chronic conditions by potentially acting as a stress buffer, thus we hypothesized that voluntary physical exercise can “realign/reset” the HPA axis resulting in reduced endometriosis symptoms in an animal model.MethodsEndometriosis was induced in female Sprague Dawley rats by implanting uterine tissue next to the intestinal mesentery on day 0. Sham controls received sutures only. One group of endometriosis animals had access to a running wheel for 2 weeks prior to endometriosis induction until time of sacrifice at day 60. Sham and endometriosis controls received no exercise. All animals were examined for developed vesicles which were collected and measured. Uterine tissue was analyzed for cellular infiltration. Brain, liver, spleen, adrenal glands, leg muscles, and fat were collected, along with peritoneal fluid and blood.ResultsEndometriosis animals developed vesicles in 86.96% of the implants with significantly increased mesenteric fat compared to sham (p ConclusionsOur results suggest that voluntary physical activity might protect against endometriosis and alleviate the associated inflammation via immune modulation of the HPA axis. This offers the potential for further exploration of exercise as a complementary therapy in endometriosis patients.</p
Persistent autism-relevant behavioral phenotype and social neuropeptide alterations in female mice offspring induced by maternal transfer of PBDE congeners in the commercial mixture DE-71.
Polybrominated diphenyl ethers (PBDEs) are ubiquitous persistent organic pollutants (POPs) that are known neuroendocrine disrupting chemicals with adverse neurodevelopmental effects. PBDEs may act as risk factors for autism spectrum disorders (ASD), characterized by abnormal psychosocial functioning, although direct evidence is currently lacking. Using a translational exposure model, we tested the hypothesis that maternal transfer of a commercial mixture of PBDEs, DE-71, produces ASD-relevant behavioral and neurochemical deficits in female offspring. C57Bl6/N mouse dams (F0) were exposed to DE-71 via oral administration of 0 (VEH/CON), 0.1 (L-DE-71) or 0.4 (H-DE-71) mg/kg bw/d from 3 wk prior to gestation through end of lactation. Mass spectrometry analysis indicated in utero and lactational transfer of PBDEs (in ppb) to F1 female offspring brain tissue at postnatal day (PND) 15 which was reduced by PND 110. Neurobehavioral testing of social novelty preference (SNP) and social recognition memory (SRM) revealed that adult L-DE-71 F1 offspring display deficient short- and long-term SRM, in the absence of reduced sociability, and increased repetitive behavior. These effects were concomitant with reduced olfactory discrimination of social odors. Additionally, L-DE-71 exposure also altered short-term novel object recognition memory but not anxiety or depressive-like behavior. Moreover, F1 L-DE-71 displayed downregulated mRNA transcripts for oxytocin (Oxt) in the bed nucleus of the stria terminalis (BNST) and supraoptic nucleus, and vasopressin (Avp) in the BNST and upregulated Avp1ar in BNST, and Oxtr in the paraventricular nucleus. Our work demonstrates that developmental PBDE exposure produces ASD-relevant neurochemical, olfactory processing and behavioral phenotypes that may result from early neurodevelopmental reprogramming within central social and memory networks
HIV-1 Nef is released in extracellular vesicles derived from astrocytes: evidence for Nef-mediated neurotoxicity
Human immunodeficiency virus-associated neurological disorders (HANDs) affect the majority of AIDS patients and are a significant problem among HIV-1-infected individuals who live longer because of combined anti-retroviral therapies. HIV-1 utilizes a number of viral proteins and subsequent cytokine inductions to unleash its toxicity on neurons. Among HIV-1 viral proteins, Nef is a small protein expressed abundantly in astrocytes of HIV-1-infected brains and has been suggested to have a role in the pathogenesis of HAND. In order to explore its effect in the central nervous system, HIV-1 Nef was expressed in primary human fetal astrocytes (PHFAs) using an adenovirus. Our results revealed that HIV-1 Nef is released in extracellular vesicles (EVs) derived from PHFA cells expressing the protein. Interestingly, HIV-1 Nef release in EVs was enriched significantly when the cells were treated with autophagy activators perifosine, tomaxifen, MG-132, and autophagy inhibitors LY294002 and wortmannin suggesting a novel role of autophagy signaling in HIV-1 Nef release from astrocytes. Next, Nef-carrying EVs were purified from astrocyte cultures and neurotoxic effects on neurons were analyzed. We observed that HIV-1 Nef-containing EVs were readily taken up by neurons as demonstrated by immunocytochemistry and immunoblotting. Furthermore, treatment of neurons with Nef-carrying EVs induced oxidative stress as evidenced by a decrease in glutathione levels. To further investigate its neurotoxic effects, we expressed HIV-1 Nef in primary neurons by adenoviral transduction. Intracellular expression of HIV-1 Nef caused axonal and neurite degeneration of neurons. Furthermore, expression of HIV-1 Nef decreased the levels of phospho-tau while enhancing total tau in primary neurons. In addition, treatment of primary neurons with Nef-carrying EVs suppressed functional neuronal action potential assessed by multielectrode array studies. Collectively, these data suggested that HIV-1 Nef can be a formidable contributor to neurotoxicity along with other factors, which leads to HAND in HIV-1-infected AIDS patients
