84 research outputs found

    Space Evaporator Absorber Radiator (SEAR) for Thermal Storage on Manned Spacecraft

    Get PDF
    Future manned exploration spacecraft will need to operate in challenging thermal environments. State-of the- art technology for active thermal control relies on sublimating water ice and venting the vapor overboard in very hot environments. This approach can lead to large loss of water and a significant mass penalty for the spacecraft. This paper describes an innovative thermal control system that uses a Space Evaporator Absorber Radiator (SEAR) to control spacecraft temperatures in highly variable environments without venting water. SEAR uses heat pumping and energy storage by LiCl/water absorption to enable effective cooling during hot periods and regeneration during cool periods. The LiCl absorber technology has the potential to absorb over 800 kJ per kg of system mass, compared to phase change heat sink systems that typically achieve approx. 50 kJ/kg. The optimal system is based on a trade-off between the mass of water saved and extra power needed to regenerate the LiCl absorber. This paper describes analysis models and the predicted performance and optimize the size of the SEAR system, estimated size and mass of key components, and power requirements for regeneration. We also present a concept design for an ISS test package to demonstrate operation of a subscale system in zero gravity

    High-Capacity Spacesuit Evaporator Absorber Radiator (SEAR)

    Get PDF
    Future human space exploration missions will require advanced life support technology that can operate across a wide range of applications and environments. Thermal control systems for space suits and spacecraft will need to meet critical requirements for water conservation and multifunctional operation. This paper describes a Space Evaporator Absorber Radiator (SEAR) that has been designed to meet performance requirements for future life support systems. A SEAR system comprises a lithium chloride absorber radiator (LCAR) for heat rejection coupled with a space water membrane evaporator (SWME) for heat acquisition. SEAR systems provide heat pumping to minimize radiator size, thermal storage to accommodate variable environmental conditions, and water absorption to minimize use of expendables. We have built and tested a flight-like, high-capacity LCAR, demonstrated its performance in thermal vacuum tests, and explored the feasibility of an ISS demonstration test of a SEAR system. The new LCAR design provides the same cooling capability as prior LCAR prototypes while enabling over 30% more heat absorbing capacity. Studies show that it should be feasible to demonstrate SEAR operation in flight by coupling with an existing EMU on the space station

    Performance of a Multifunctional Space Evaporator-Absorber-Radiator (SEAR)

    Get PDF
    The Space Evaporator-Absorber-Radiator (SEAR) is a nonventing thermal control subsystem that combines a Space Water Membrane Evaporator (SWME) with a Lithium Chloride Absorber Radiator (LCAR). The LCAR is a heat pump radiator that absorbs water vapor produced in the SWME. Because of the very low water vapor pressure at equilibrium with lithium chloride solution, the LCAR can absorb water vapor at a temperature considerably higher than the SWME, enabling heat rejection sufficient for most EVA activities by thermal radiation from a relatively small area radiator. Prior SEAR prototypes used a flexible LCAR that was designed to be installed on the outer surface of a portable life support system (PLSS) backpack. This paper describes a SEAR subsystem that incorporates a very compact LCAR. The compact, multifunctional LCAR is built in the form of thin panels that can also serve as the PLSS structural shell. We designed and assembled a 2 ft prototype LCAR based on this design and measured its performance in thermal vacuum tests when supplied with water vapor by a SWME. These tests validated our models for SEAR performance and showed that there is enough area available on the PLSS backpack shell to enable rejection of metabolic heat from the LCAR. We used results of these tests to assess future performance potential and suggest approaches for integrating the SEAR system with future space suits

    Multifunctional Cooling Garment for Space Suit Environmental Control

    Get PDF
    Future manned space exploration missions will require space suits with capabilities beyond the current state of the art. Portable Life Support Systems for these future space suits face daunting challenges, since they must maintain healthy and comfortable conditions inside the suit for longduration missions while minimizing weight and water venting. We have demonstrated the feasibility of an innovative, multipurpose garment for thermal and humidity control inside a space suit pressure garment that is simple, rugged, compact, and lightweight. The garment is a based on a conventional liquid cooling and ventilation garment (LCVG) that has been modified to directly absorb latent heat as well as sensible heat. This hybrid garment will prevent buildup of condensation inside the pressure garment, prevent loss of water by absorption in regenerable CO2 removal beds, and conserve water through use of advanced lithium chloride absorber/radiator (LCAR) technology for nonventing heat rejection. We have shown the feasibility of this approach by sizing the critical components for the hybrid garment, developing fabrication methods, building and testing a proof-of-concept system, and demonstrating by test that its performance is suitable for use in space suit life support systems

    Mammary stem cells have myoepithelial cell properties.

    Get PDF
    Contractile myoepithelial cells dominate the basal layer of the mammary epithelium and are considered to be differentiated cells. However, we observe that up to 54% of single basal cells can form colonies when seeded into adherent culture in the presence of agents that disrupt actin-myosin interactions, and on average, 65% of the single-cell-derived basal colonies can repopulate a mammary gland when transplanted in vivo. This indicates that a high proportion of basal myoepithelial cells can give rise to a mammary repopulating unit (MRU). We demonstrate that myoepithelial cells, flow-sorted using two independent myoepithelial-specific reporter strategies, have MRU capacity. Using an inducible lineage-tracing approach we follow the progeny of myoepithelial cells that express α-smooth muscle actin and show that they function as long-lived lineage-restricted stem cells in the virgin state and during pregnancy.This work was funded by Cancer Research UK, Breast Cancer Campaign, the University of Cambridge, Hutchison Whampoa Limited, La Ligue Nationale Contre le Cancer (Equipe Labelisée 2013) and a grant from Agence Nationale de la Recherche ANR- 08-BLAN-0078-01 to M.A.G.This is the author accepted manuscript. The final version is available from Nature at http://www.nature.com/ncb/journal/vaop/ncurrent/full/ncb3025.html

    CD24 staining of mouse mammary gland cells defines luminal epithelial, myoepithelial/basal and non-epithelial cells

    Get PDF
    INTRODUCTION: Breast cancer is thought to arise in mammary epithelial stem cells. There is, therefore, a large amount of interest in identifying these cells. The breast is a complex tissue consisting of two epithelial layers (an outer myoepithelial/basal layer and an inner luminal epithelial layer) as well as a large non-epithelial component (fibroblasts, endothelial cells, lymphocytes, adipocytes, neurons and myocytes). The definitive identification of a mammary epithelial stem cell population is critically dependent on its purity. To date, this has been hampered by the lack of suitable markers to separate out the two epithelial layers, and to remove contaminating non-epithelial cells. METHODS: Mouse mammary glands were dissociated and stained with CD24. Cells were sorted into separate populations based on CD24 expression and assessed for luminal epithelial and myoepithelial/basal markers by direct fluorescent microscopy and real time PCR. The stem/progenitor potential of these cell populations was assessed in vivo by cleared mammary fat pad transplantation. RESULTS: Three populations of CD24 expressing cells were identified: CD24(Negative), CD24(Low )and CD24(High). Staining of these cells with cytokeratin markers revealed that these populations correspond to non-epithelial, myoepithelial/basal and luminal epithelial cells, respectively. Cell identities were confirmed by quantitative PCR. Cleared mammary fat pad transplantation of these cell populations revealed that extensive mammary fat pad repopulation capacity segregates with the CD24(Low )cells, whilst CD24(High )cells have limited repopulation capacity. CONCLUSION: Differential staining of mammary epithelial cells for CD24 can be used to simultaneously isolate pure populations of non-epithelial, myoepithelial/basal and luminal epithelial cells. Furthermore, mammary fat pad repopulation capacity is enriched in the CD24(Low )population. As separation is achieved using a single marker, it will be possible to incorporate additional markers to further subdivide these populations. This will considerably facilitate the further analysis of mammary epithelial subpopulations, whilst ensuring high purity, which is key for understanding mammary epithelial stem cells in normal tissue biology and carcinogenesis

    Mammary cancer and epithelial stem cells: a problem or a solution?

    Get PDF
    The existing paradigms for stem cells in adult tissues include the integument, the alimentary canal, the lung, the liver, skeletal muscle and bone marrow. The mammary gland, by contrast, is the 'new kid on the block'. What little is known about stem cells in the mammary gland indicates that they possess a prodigious capacity for self-renewal. More importantly, in rodents, they persist with undiminished reproductive vigor throughout the organism's lifetime without regard to age or reproductive history. Do these stem cells represent primary targets for mammary neoplasia? If so, what are the implications for prevention/therapy

    Linear and cooperative signaling: roles for Stat proteins in the regulation of cell survival and apoptosis in the mammary epithelium

    Get PDF
    The mammary epithelium undergoes cyclical periods of cellular proliferation, differentiation and regression. These processes are under the control of the hormones secreted during pregnancy, lactation and involution. Signaling pathways have been identified that connect the hormonal stimuli with the transcription of genes responsible for the determination of the cellular fate. The kinetics of induction and deinduction have suggested that cytokine-activated Stat proteins play a crucial role. Stat5 is strongly activated towards the end of pregnancy, persists in an activated state during pregnancy and is rapidly inactivated after cessation of suckling. Stat3 activation is hardly detectable during lactation, but is strongly induced at the onset of involution. The phenotypes of mice in which these genes have been inactivated through homologous recombination corroborate some of the functional assignments deducted from the activation pattern. Stat3 activation seems to be a driving force in the induction of apoptosis early in the involution period

    Functional and molecular characterisation of mammary side population cells

    Get PDF
    BACKGROUND: Breast cancer is thought to arise in mammary epithelial stem cells. However, the identity of these stem cells is unknown. METHODS: Studies in the haematopoetic and muscle systems show that stem cells have the ability to efflux the dye Hoechst 33342. Cells with this phenotype are referred to as the side population (SP). We have adapted the techniques from the haematopoetic and muscle systems to look for a mammary epithelial SP. RESULTS: Of mammary epithelial cells isolated from both the human and mouse mammary epithelia, 0.2–0.45% formed a distinct SP. The SP was relatively undifferentiated but grew as typical differentiated epithelial clones when cultured. Transplantation of murine SP cells at limiting dilution into cleared mammary fat pads generated epithelial ductal and lobuloalveolar structures. CONCLUSION: These data demonstrate the existence of an undifferentiated SP in human and murine mammary epithelium. Purified SP cells are a live single-cell population that retain the ability to differentiate in vitro and in vivo. Studies of haematopoetic cells have suggested that the SP phenotype constitutes a universal stem cell marker. This work therefore has implications for mammary stem cell biology
    corecore