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The Space Evaporator-Absorber-Radiator (SEAR) is a nonventing thermal 
control subsystem that combines a Space Water Membrane Evaporator 
(SWME) with a Lithium Chloride Absorber Radiator (LCAR). The LCAR is a 
heat pump radiator that absorbs water vapor produced in the SWME. Because 
of the very low water vapor pressure at equilibrium with lithium chloride 
solution, the LCAR can absorb water vapor at a temperature considerably 
higher than the SWME, enabling heat rejection sufficient for most EVA 
activities by thermal radiation from a relatively small area radiator. Prior 
SEAR prototypes used a flexible LCAR that was designed to be installed on the 
outer surface of a portable life support system (PLSS) backpack. This paper 
describes a SEAR subsystem that incorporates a very compact LCAR. The 
compact, multifunctional LCAR is built in the form of thin panels that can also 
serve as the PLSS structural shell. We designed and assembled a 2 ft² prototype 
LCAR based on this design and measured its performance in thermal vacuum 
tests when supplied with water vapor by a SWME. These tests validated our 
models for SEAR performance and showed that there is enough area available 
on the PLSS backpack shell to enable rejection of metabolic heat from the 
LCAR. We used results of these tests to assess future performance potential and 
suggest approaches for integrating the SEAR system with future space suits. 

Nomenclature 
ALCAR  is the radiating surface area of the LCAR (m²) 

Cf   is the LCAR’s final concentration (g LiCl / g solution) 

C0   is the LCAR’s initial concentration (g LiCl / g solution)   
hfg   is the heat of evaporation of water (roughly 2,500 J/g) 
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habs  is the heat of absorption of water in LiCl solution (250–500 J/g, depending on the solution concentration) 

mw,a  is the mass of water absorbed (kg) 

mLiCl  is the mass of LiCl in the LCAR (kg) 

q   is the rate of heat rejection by thermal radiation (W) 

TLCAR  is the surface temperature of the LCAR (K) 

Tenv  is the temperature of the environment seen by the LCAR (K) 

   is the emissivity of the LCAR radiating surface (--) 

   is the Stefan-Boltzmann constant (5.67×10-8 W/m2-K4) 

I. Introduction 
Heat rejection from space suits is a critical life support function that presents significant engineering challenges. 

Space suits are heavily insulated to protect spacewalking astronauts from extreme thermal environments; however, 
this insulation traps metabolic heat inside the suit. Current technology uses a circulating water loop to  absorb heat 
inside the pressure garment, then transport the heat to a block of water ice in a sublimator. The ice in the sublimator 
absorbs heat from the circulating water by gradually vaporizing and venting steam into the surrounding vacuum. 
This system has an extensive flight heritage (dating back to the Apollo program) but consumes about 8 lbm (3.6 kg) 
of water for a typical EVA sortie. Recently NASA has developed a Space Water Membrane Evaporator (SWME) to 
replace the sublimator with a device that has better long-term performance characteristics. The SWME evaporates 
circulating water directly from a bundle of porous, hydrophobic hollow fibers. Expendable cooling with a sublimator 
or SWME is highly practical for operations in low-Earth orbit where resupply is relatively simple. However, cooling 
by consuming water would place severe constraints on EVA for future exploration missions that call for extended 
operations at great distances from Earth. A prior paper presented data showing the very large impact of conventional 
spacesuit cooling on ECLSS mass for future exploration missions (Bue et al. 2013).  For long missions (575 days), 
water consumed during EVAs can amount to 2,500 kg, or over 30% of the total ECLSS mass.  

This paper describes recent advances in the Space Evaporator-Absorber-Radiator (SEAR) technology. The 
objective of a SEAR is to dramatically reduce the use of consumables for EVA thermal management. SEAR 
combines the SWME with a Lithium-Chloride Absorber Radiator (LCAR) that rejects heat mainly by thermal 
radiation from a compact, high-temperature radiator. Figure 1 shows how the SEAR system is related to 
conventional thermal control technology. Figure 1a illustrates conventional technology, in which a SWME rejects 
heat from the life support system by venting water vapor to space. Both the SWME and the liquid cooling garment 
(LCG) operate at a temperature of about 20°C, with variations due to the astronaut’s metabolic rate. Figure 1b shows 
a SEAR system, in which water vapor is absorbed in an LCAR instead. The LCAR uses a batch process, 
regenerable, absorption heat pump to capture water vapor produced in the SWME. LiCl/water solution in the LCAR 
is a powerful desiccant that maintains a very low vapor pressure even at relatively high temperatures. Water vapor 
from the SWME condenses and is absorbed in the solution. The heat generated in this process radiates to space from 
the surface of the LCAR. Since the vapor pressure over the solution is so low, this process can occur at temperatures 
that are typically 30°C higher than the SWME temperature. This enables the LCAR to operate as a heat pump, 
rejecting heat at temperatures of about 50°C which significantly reduces the size of the radiator.  
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Since any noncondensible gas in the cooling water will evolve in the SWME and flow to the LCAR, efficient 
management of noncondensible gas in the LCAR is an important design requirement. Noncondensible gas in the 
LCAR will behave like noncondensibles in variable-conductance heat pipes. The gas will flow with water vapor 
until the water vapor condenses, leading to gradual accumulation of the gas at stagnation points in the flow field. 
LCARs are therefore designed with vents to remove the noncondensibles. These vents can be used either 
intermittently or continuously. In an intermittently vented system, the LCAR is vented to space periodically to 
eliminate the noncondensibles from the internal volume. In a continuously vented system, an appropriately sized 
capillary tube connects the “far end” of the LCAR (where noncondensibles accumulate away from the water vapor 
inlet) to external vacuum for continuous bleeding. Both approaches result in the loss of a small amount of water, but 
in either case the amount of water lost is orders of magnitude smaller than the amount of water vapor lost from 
systems that provide cooling by venting water vapor.  

Figure 2 and Figure 3 show current embodiments of the SWME and LCAR technology. Figure 2 is a photograph 
of the Gen 1 SWME, which uses a 16 cm-long bundle of 14,900 hollow fibers in parallel to evaporate water into the 
shell-side vacuum space. The Gen 1 SWME has been tested extensively and has been found to meet system 
requirements for space suit thermal control (Bue et al. 2010).  Figure 3 is a photograph of the flexible LCAR 
prototype that was used in the first SEAR demonstration. The LCAR is a compact heat/mass exchanger that 
comprises an array of LiCl absorber elements in good thermal contact with the radiating surface and with an array of 
flow passages for water vapor that enables efficient operation during both absorption and regeneration. The absorber 
elements are precision-cut sponge elements that contain the liquid LiCl solution by capillary forces. At very high 
concentrations, the solution is solid and remains in the pores of the sponges. Prior papers (Izenson et al. 2008; 
Izenson and Chen et al. 2009) provide a detailed description of the flexible LCAR. The Gen 1 SWME and flexible 
LCAR were coupled to create the first SEAR system and tested under thermal vacuum conditions in Chamber N at 
NASA JSC in 2012 (Bue et al. 2013). These tests were highly successful, and demonstrated the feasibility of 
nonventing thermal control using a SEAR system. They also pointed the way toward improvements in the LCAR 
design that would make the SEAR system more attractive for future programs.  
 
  

 
(a) Heat rejection using SWME (b) Heat rejection using SEAR with flexible LCAR 

 
Figure 1. Evolution of early SEAR concept. 
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 The structural elements of the process demonstrator were machined from thin sheets of high-conductivity 
graphite. Figure 8 is a photograph of the process demonstrator during assembly, showing one of the lattice layers in 
place over the central panel holding an array of absorber sponges. Figure 9 shows two views of an assembled LCAR 
panel after attaching manifolds, fittings, and instrumentation. Figure 9a shows the radiating side, which faces a 
cooled shroud during testing and corresponds to the outboard face of the LCAR in the PLSS shell assembly shown 
in Figure 4. Figure 9b shows the opposite side of the LCAR, which is insulated in our tests and corresponds to the 
inboard faces of the LCAR panels shown in Figure 4. During testing, one of the fittings is coupled to the SWME (or 
equivalent vapor source) while the other fitting is coupled to a vacuum pump for periodic venting or continuous 
venting through a capillary tube. An array of thermocouples attached to the radiating surface measures temperature 
uniformity.  
 

 
Figure 8. Flow lattice and central panel after bonding. 
 

(a) Radiating side (b) “PLSS-facing” side 
 
Figure 9. LCAR panel with vapor fittings and thermocouples attached. 
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Figure 11. SEAR test facility. 

 
Multi-layer insulation (MLI) between the two LCAR panels (facing each panel’s non-radiating side) limits the 

heat transfer between the panels. We also surround the entire shroud assembly with MLI to insulate the test 
hardware from the room-temperature walls of the bell jar. Each LCAR panel is supported by four small-diameter 
stainless steel pins that are held in place by G10 phenolic frames mounted on four posts. The very low thermal 
conductance of the stainless steel pins (roughly 0.12 mW/°C for each pin) insulates the panels from the frames. 
These mounting frames allow us to easily remove the LCAR panels after each test and weigh them to measure the 
quantity of water absorbed.   

B. Test Matrix and Measurements 
Table 1 summarizes the test matrix, which began with a thermal calibration test (using an electrically-heated 

radiator) and went on to include tests using one and two flat panel LCARs and two sources of water vapor. Shroud 
temperatures were set at 180 and/or 250 K, to simulate cold and 1-sun thermal radiation environments. Water vapor 
was supplied either from the SWME or from a Creare evaporator developed to support LCAR testing. The steady 
state performance of the Creare evaporator and the SWME were very similar, so most of the tests were run with the 
Creare evaporator to simplify testing. Tests with the SWME were used mainly to confirm similar performance.   

Between tests, the LCARs were regenerated by heating to 120°C for 4 hours while under vacuum (0.5 to 2.0 torr, 
corresponding to the vapor pressure of water in the system). At the end of this process, the LiCl concentration in the 
absorber sponges exceeds 90%. The system is able to operate with these high concentrations—corresponding to 
crystallized LiCl—because the solution does not flow during operation of the LCAR. This method for regenerating 
the LCAR is similar to methods that could be used on future space exploration missions. In a manned spacecraft 
module or habitat, water exhausted from the vacuum pump would enter the internal atmosphere and be recovered by 
a condensing heat exchanger or other water recovery equipment in future environmental control and life support 
systems.   

Table 2 lists the key instrumentation used during testing. LCAR temperatures were measured with an array of 
thermocouples attached to the radiating and insulated surfaces. We attached multiple TCs to the radiating surface of 
each LCAR panel to provide measurements of temperature uniformity. An additional TC was attached to the back, 
insulated side of each panel to measure the average, internal temperature. Water vapor pressures were measured in 
both the evaporator and LCAR. The saturation pressure in the evaporator is a measure of the average cooling 
temperature provided by the SEAR system. Power input to the evaporator was calculated by calorimetry on the 
water that flowed through the SWME or the heat exchanger in the evaporator. Finally, the water absorbed in each 
test was measured by weighing the LCAR panels (uncoupled from the rest of the system) before and after each 
absorption and regeneration.  
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Table 1. Test matrix. 

 
Shroud 

Temperature (K) 
Water Vapor 

Source 
Venting 

Thermal 
calibration 

180, 250 — — 

Single panel 180, 235 
Creare 

evaporator 
Intermittent 

Dual panel 
SEAR 

180, 250 
SWME, Creare 

evaporator 
Intermittent 

Dual panel 180, 250 
Creare 

evaporator 
Continuous 

 
 

Table 2. Instrumentation. 

 Instruments Locations Accuracy 
LCAR surface 
temperature 

Type T Thermocouples 
Nine locations across each LCAR radiating 

surface 1.0°C 

LCAR back 
temperature 

Type T Thermocouples Center of each insulated LCAR surface 1.0°C 

SWME or evaporator 
pressure 

Kurt Lesker diaphragm 
vacuum gage 

At SWME or evaporator outlet 1.0 torr 

LCAR pressure 
Kurt Lesker diaphragm 

vacuum gage 
At water vapor inlet to vacuum chamber,  
24 in. of tubing upstream from LCAR 

1.0 torr 

SWME or evaporator 
power 

Calibrated PRTs and 
calibrated rotameter 

Circulating water inlet and exit from SWME or 
evaporator 5 W 

Water absorption Scale — 0.5 g 

C. Thermal Calibration 
Before installing LCAR panels, we installed two “dummy” radiators made from copper panels instrumented with 

thermocouples and attached to thin-film resistance heaters. We installed six thermocouples on the radiating surfaces 
of each radiator and shroud to measure the temperature distribution. Figure 12 shows the average of temperatures 
recorded from the upper and lower radiators and shroud panels during thermal calibration testing. During this test, 
we controlled both the heat input to the radiator and the temperature of the shroud. There were four test points: 15 W 
/ 250 K, 30 W / 250 K, 30 W / 180 K, and 50 W / 180 K. Key data were the radiator temperature and the uniformity 
of the shroud temperature. The radiator temperatures are quite uniform for both the lower and upper radiators, and 
are consistent with the results of radiation heat transfer calculations assuming an Aeroglaze emissivity of 0.90. The 
upper shroud temperatures were also quite uniform at 250 K (2.5 K, corresponding to a heat flux variation of 
2.5%) and slightly less uniform at 180 K (15 K, corresponding to a heat flux variation of 4%). The lower shroud 
had slightly greater temperature variation at the 250 K test point (5 K, corresponding to a heat flux variation of 
5%) and roughly similar variation for the 180 K test point.  



Figure 12.
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Figure 17 plots the temperature differences measured in the circulating loops that heated the SWME and the 
Creare evaporator. Temperature differences during operation were generally 3 to 4°C. Note that the SWME 
responds much more rapidly when activated due to the lower thermal mass of the fiber bundle compared to the 
Creare evaporator. The periodic temperature fluctuations observed in the LCAR panel correspond with the pressure 
variations due to periodic venting of noncondensible gas.   

 
Figure 17. Temperature difference across SWME and evaporator (12/18/13). 

 
A second test of dual LCAR panels was run on 1/8/14. This test used only the Creare evaporator as a heat source, 

vented noncondensible gases continuously through a capillary tube,7 and shows the effects of gradually closing the 
control valve between the evaporator and the LCAR pair. Table 4 lists the shroud and LCAR back temperatures for 
each operating point. As the valve was closed, vapor pressure in the LCAR panels decreased, resulting in lower 
radiating temperatures and lower rates of heat transfer. The thermal power estimated by calorimetry varies by a 
factor of three between fully open and mostly closed. We believe the variation in power in this test is indicated 
better by the calorimetry loop, since the thermal mass of the radiator slowed its adjustment to new power levels 
while the evaporator temperature adjusted more quickly.  

 

Table 4. Thermal power calculations for second dual LCAR test (12/18/13). 

Control Valve Position Fully Open 
Partially 
Closed 

Mostly 
Closed 

Fully 
Open 

Average Upper Shroud Temperature   (K) 175.6 176.7 174.4 173.5 

Average Lower Shroud Temperature   (K) 173.6 174.2 172.2 173.1 

Upper LCAR Back Temperature    (°C) 41.7 41.0 19.2 27.7 

Lower LCAR Back Temperature    (°C) 50.0 44.2 23.1 33.5 

Water Supply Power        (W) 88.9 69.7 31.6 77.4 

 
Figure 18 and Figure 19 show the LCAR and shroud temperatures measured during this test. Overall behavior is 

similar to the first test with dual LCARs, except that with continuous venting there were no periodic temperature 
fluctuations. Figure 20 plots the temperature drop in the circulating water after flowing through the evaporator.  

                                                           
7 Capillary tube dimensions are 9.25 in. long, 0.125 in. outer diameter, 0.069 in. inner diameter. 
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V. Scaling to Space Suit Conditions 
We assessed critical aspects of the SEAR technology and its potential for use in future exploration space suits. 

Key elements of this assessment were: 
• Scaling the LCAR cooling capacity (W-hr) to future space suits with advanced honeycomb designs. We 

believe that 250 W-hr/ft² should be possible.   
• Scaling the LCAR cooling rate (W) to future space suits where the LCAR doubles as the PLSS housing. 

We believe that heat rejection rates in the range 150 to 300 W should be possible, depending on the 
LCAR and environmental temperatures.  

• Comparing the SEAR to competing thermal control technologies. 

E. Scaling LCAR Cooling Capacity 
The cooling capacity of the LCAR is expressed in units of W-hr/ft², and is equivalent to the LCAR’s ability to 

absorb water. We scaled the current LCAR cooling capacity to future LCAR designs, assuming that future units 
would incorporate improved internal structures that approach a true honeycomb geometry and allow more space for 
the LiCl absorber elements. The baseline cooling capacity of the current LCAR design can be estimated in two 
ways:  (1) based on amount of LiCl that the LCAR can hold, and (2) based on the W-hr of heat rejection measured 
in thermal vacuum tests.  

It is straightforward to estimate the amount of LiCl that can be held in future LCAR designs. The 1 ft² panels 
tested in this project were charged with 213 g of LiCl. Potential future improvements in LiCl capacity can be 
estimated based on the measured pressure retention capability of the current design. The pressure retention 
capability of the current LCAR has been measured to be about four times greater than actually needed. Therefore, a 
future unit built using similar fabrication methods could increase the amount of internal volume available for LiCl 
by reducing the internal area used to support internal pressure loads. This would be accomplished by increasing the 
size of the pockets in the absorber layer (Figures 6 and 7) that contain the absorber sponges. If the thickness of the 
future LCAR is still limited to 0.5 in., then the possible improvement in LiCl charge can be computed by reducing 
the area occupied by structural elements by a factor of four. Table 5 shows the result of this scaling calculation. Also 
shown is the best possible storage density in a “true” honeycomb structure (like the one shown in Figure 5), in which 
nearly the entire internal volume can be used for LiCl storage. We believe that it should be feasible to construct this 
type of structure, although it will require development of improved fabrication methods.  

 

Table 5. LiCl storage density. 

 
Phase III Design 

(as built) 

Phase III Design With 
Optimized Internal 

Structure 

“Perfect” 
Honeycomb 

LiCl Storage Density (kg LiCl / ft²) 0.213 0.267 0.281 

Mass of LCAR Structure  
(w/o LiCL) (kg/ft2) 

1.37 1.33 1.32 

Total Dry Mass (kg/ft2) 1.58 1.60 1.60 

 
The cooling capacity can be computed based on the amount of water that can be absorbed in the LiCl solution. 

The water absorption capacity depends on the amount of LiCl in the LCAR and the solution concentrations at the 
beginning and end of an EVA sortie: 

 ݉௪,௔ ൌ ݉௅௜஼௟ ൬
ଵ

஼೑
െ ଵ

஼బ
൰ (1) 

Cooling capacity is simply the amount of water that can be absorbed by the LCAR multiplied by the heat of 
evaporation (hfg), which will equal the cooling provided by the SWME when operating in a SEAR system. Figure 23 
plots the cooling potential per square foot of LCAR radiating area calculated using Eq. (1), assuming a LiCl storage 
density of 267 g/ft² (corresponding to the “optimized internal structure” design in Table 5). The calculation shows 
that the cooling capacity depends strongly on the final LiCl concentration (Cf), while the dependence on starting 
concentration (Ci) is relatively weak. The final concentration that can be achieved in the LCAR will be limited by 
the increase in water vapor pressure at low LiCl concentrations. Figure 24 plots calculated water vapor pressure in 
equilibrium with LiCl solution as a function of Cf and the final radiating temperature using relations for water vapor 
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Table 6. Heat rejection technology sizing results (based on an 8-hr EVA). 

 
Mass of 

Sublimator 
Alone (lbm) 

Mass of 
SWME Alone 

(lbm) 

SEAR mass 
(lbm) 

SWME + 
Simple 

Radiator (lbm) 

SWME + 
Simple 

Radiator (lbm) 

Tsink = 250 K Tsink = 180 K Tsink = 250 K 

Evaporator  4.8 4.1 4.1 4.1 4.1 

Radiator  0 0 18.1 4.4 4.4 

Water Charge  9.1 9.1 9.1 6.0 6.0 

Housing Credit 0 0 -138 0 0 

On-back Mass  13.9 13.2 18.3 14.59 14.59 

Water Discharged  9.1 9.1 3.3 3.4 6.0 

Water Saved by the Radiator  5.8 5.7 3.1 

 

VI. Conclusions and Forward Work 
This work has demonstrated the feasibility of building a flat panel LCAR for use in a SEAR system with 

improved thermal performance compared to earlier prototypes. The conclusions from this work are as follows: 
• It is feasible to build LCAR panels that have a thin, planar configuration, high volumetric packing 

density for LiCl, and high internal mass transfer area. 
• The honeycomb LCARs are structurally sound and retain their integrity across the range of expected 

operating conditions. 
• Aeroglaze coatings provide a high-emissivity (0.90) radiating surface for the LCAR panels.  
• The honeycomb LCARs provide a highly uniform radiating temperature (10°F) across their entire 

surface. 
• The honeycomb LCARs operate well with vapor produced by a SWME, showing the feasibility of 

operating a SEAR system. 
• The internal gas flow design and high thermal conductivity of the honeycomb LCAR prevent direct 

condensation and freezing of water vapor during operation. 
• The honeycomb LCARs are capable of up to 250 W-hr/ft² total heat rejection. 
• The honeycomb LCARs are capable of radiating powers up to 45 W/ft². Higher radiating powers are 

possible early in a mission, when the LiCl concentration is higher. Radiating power gradually decreases 
as the LiCl concentration decreases. 

• The SEAR system can save much more water in a wider range of environments than competing heat 
rejection systems. 

Based on these findings, we identified the next steps for continued development of the SEAR technology 
incorporating multifunctional LCAR units. These next steps would involve: 

• Continued development of fabrication methods with the goal of boosting the LiCl capacity of the LCAR 
panels by moving towards a true honeycomb structure. 

• Structural, shock, impact, and vibration tests of assembled LCAR panels to validate fabrication and 
design methods. 

• A full safety analysis of the LCAR to confirm that LiCl containment and immobilization are adequate 
for flight operations. 

• Development of detailed analysis methods for the absorption and regeneration processes in the LCAR 
that will enable optimization of future designs.   

• Additional testing of the SEAR system with a current-generation SWME to enable optimization of the 
noncondensible gas venting process.   

                                                           
8 Based on 7.5 ft2 of Al panel, 1/8-in. thick. 
9 Does not account for additional mass needed to prevent freezing. 
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• Design and operational analysis of tests that couple a SEAR system with an EMU PLSS on the ground 
and on the ISS. 

• Development of design concepts and trade-off studies for life support systems on future space suits that 
incorporate SEAR systems with multifunctional LCAR panels.  
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