152 research outputs found

    Continental aridification and the vanishing of Australia\u27s megalakes

    Get PDF
    The nature of the Australian climate at about the time of rapid megafaunal extinctions and humans arriving in Australia is poorly understood and is an important element in the contentious debate as to whether humans or climate caused the extinctions. Here we present a new paleoshoreline chronology that extends over the past 100 k.y. for Lake Mega-Frome, the coalescence of Lakes Frome, Blanche, Callabonna and Gregory, in the southern latitudes of central Australia. We show that Lake Mega-Frome was connected for the last time to adjacent Lake Eyre at 50-47 ka, forming the largest remaining interconnected system of paleolakes on the Australian continent. The final disconnection and a progressive drop in the level of Lake Mega-Frome represents a major climate shift to aridification that coincided with the arrival of humans and the demise of the megafauna. The supply of moisture to the Australian continent at various times in the Quaternary has commonly been ascribed to an enhanced monsoon. This study, in combination with other paleoclimate data, provides reliable evidence for periods of enhanced tropical and enhanced Southern Ocean sources of water filling these lakes at different times during the last full glacial cycle. © 2011 Geological Society of America

    COVID-19: Rapid antigen detection for SARS-CoV-2 by lateral flow assay: A national systematic evaluation of sensitivity and specificity for mass-testing

    Get PDF
    Background Lateral flow device (LFD) viral antigen immunoassays have been developed around the world as diagnostic tests for SARS-CoV-2 infection. They have been proposed to deliver an infrastructure-light, cost-economical solution giving results within half an hour. Methods LFDs were initially reviewed by a Department of Health and Social Care team, part of the UK government, from which 64 were selected for further evaluation from 1st August to 15th December 2020. Standardised laboratory evaluations, and for those that met the published criteria, field testing in the Falcon-C19 research study and UK pilots were performed (UK COVID-19 testing centres, hospital, schools, armed forces). Findings 4/64 LFDs so far have desirable performance characteristics (orient Gene, Deepblue, Abbott and Innova SARS-CoV-2 Antigen Rapid Qualitative Test). All these LFDs have a viral antigen detection of >90% at 100,000 RNA copies/ml. 8951 Innova LFD tests were performed with a kit failure rate of 5.6% (502/8951, 95% CI: 5.1–6.1), false positive rate of 0.32% (22/6954, 95% CI: 0.20–0.48). Viral antigen detection/sensitivity across the sampling cohort when performed by laboratory scientists was 78.8% (156/198, 95% CI 72.4–84.3). Interpretation Our results suggest LFDs have promising performance characteristics for mass population testing and can be used to identify infectious positive individuals. The Innova LFD shows good viral antigen detection/sensitivity with excellent specificity, although kit failure rates and the impact of training are potential issues. These results support the expanded evaluation of LFDs, and assessment of greater access to testing on COVID-19 transmission. Funding Department of Health and Social Care. University of Oxford. Public Health England Porton Down, Manchester University NHS Foundation Trust, National Institute of Health Research

    Medical conditions in autism spectrum disorders

    Get PDF
    Autism spectrum disorder (ASD) is a behaviourally defined syndrome where the etiology and pathophysiology is only partially understood. In a small proportion of children with the condition, a specific medical disorder is identified, but the causal significance in many instances is unclear. Currently, the medical conditions that are best established as probable causes of ASD include Fragile X syndrome, Tuberous Sclerosis and abnormalities of chromosome 15 involving the 15q11-13 region. Various other single gene mutations, genetic syndromes, chromosomal abnormalities and rare de novo copy number variants have been reported as being possibly implicated in etiology, as have several ante and post natal exposures and complications. However, in most instances the evidence base for an association with ASD is very limited and largely derives from case reports or findings from small, highly selected and uncontrolled case series. Not only therefore, is there uncertainty over whether the condition is associated, but the potential basis for the association is very poorly understood. In some cases the medical condition may be a consequence of autism or simply represent an associated feature deriving from an underlying shared etiology. Nevertheless, it is clear that in a growing proportion of individuals potentially causal medical conditions are being identified and clarification of their role in etio-pathogenesis is necessary. Indeed, investigations into the causal mechanisms underlying the association between conditions such as tuberous sclerosis, Fragile X and chromosome 15 abnormalities are beginning to cast light on the molecular and neurobiological pathways involved in the pathophysiology of ASD. It is evident therefore, that much can be learnt from the study of probably causal medical disorders as they represent simpler and more tractable model systems in which to investigate causal mechanisms. Recent advances in genetics, molecular and systems biology and neuroscience now mean that there are unparalleled opportunities to test causal hypotheses and gain fundamental insights into the nature of autism and its development

    A genetic classification of floodplains

    Get PDF
    Floodplains are formed by a complex interaction of fluvial processes but their character and evolution is essentially the product of stream power and sediment character. The relation between a stream\u27s ability to entrain and transport sediment and the erosional resistance of floodplain alluvium that forms the channel boundary provides the basis for a genetic classification of floodplains. Three classes are recognised: (1) high-energy non-cohesive; (2) medium-energy non-cohesive; and (3) low-energy cohesive floodplains. Thirteen derivative orders and suborders, ranging from confined, coarse-grained, non-cohesive floodplains in high-energy environments to unconfined fine-grained cohesive floodplains in low-energy environments, are defined on the basis of nine factors (mostly floodplain forming processes). These factors result in distinctive geomorphological features (such as scroll bars or extensive backswamps) that distinguish each floodplain type in terms of genesis and resulting morphology. Finally, it is proposed that, because floodplains are derivatives of the parent stream system, substantial environmental change will result in the predictable transformation of one floodplain type to another over time

    Alluvial evidence for major climate and flow regime changes during the middle and late Quaternary in eastern central Australia

    Get PDF
    As a low-gradient arid region spanning the tropics to the temperate zone, the Lake Eyre basin has undergone gentle late Cenozoic crustal warping leading to substantial alluvial deposition, thereby forming repositories of evidence for palaeoclimatic and palaeohydrological changes from the Late Tertiary to the Holocene. Auger holes and bank exposures at 5 locations along the lower 500 km of Cooper Creek, a major contributor to Lake Eyre in the eastern part of the basin, yielded 85 luminescence dates (TL and OSL) that, combined with a further 142 luminescence dates from northeastern Australia, have established a chronology of multiple episodes of enhanced flow regime from about 750 ka to the Holocene. Mean bankfull discharges on Cooper Creek upstream of the Innamincka Dome at 250–230 ka or oxygen isotope stages (OIS) 7–6 are estimated to have been 5 to 7 times larger than those of today, however, substantially less reworking has occurred during and after OIS 5 than before. Lower Cooper Creek appears to have similarly declined. In the Tirari Desert adjacent to Lake Eyre there is evidence of widespread alluvial activity, perhaps during but certainly before the Middle Pleistocene, yet the river became laterally restricted in OIS 7 to 5. While the Quaternary has been characterised by a dramatically oscillating wet–dry climate, since oxygen isotope stage OIS 7 or 6 there has been a general decline in the magnitude of the episodes of wetness to which the eastern part of central Australia has periodically returned. During the last full glacial cycle, Cooper Creek's periods of greatest runoff and sand transport were not during the last interglacial maximum of OIS 5e (132–122 ka) but later in OIS 5 when sea levels and global temperatures were substantially below those of 5e or today. Fluvial activity returned in OIS 4 and 3, but not to the extent of mid and late OIS 5; strongly seasonal but still powerful flows transported sand and fed source-bordering dunes in OIS 5 and 3. This chronology of fluvial activity in the late Quaternary broadly coincides with that for rivers of southeastern Australia and suggests that the wet phases in eastern central Australia have not been governed as much by the northern monsoon as by conditions in the western Pacific close to the east coast both north and south. Flow confinement within the Innamincka Dome has locally amplified Cooper Creek's energy, and here evidence exists for short but high-magnitude episodes of flow during the Last Glacial Maximum and in the early to middle Holocene, conditions that were capable of forming large palaeochannels but that were not long-lived enough to rework the river's extensive floodplains elsewhere along its length
    corecore