25 research outputs found

    Climate change and land use change impacts on future availability of forage grass species for Ethiopian dairy systems

    No full text
    Forage grasses are central feed resources for livestock globally. In Ethiopian dairy systems, they serve as feed sources during both wet and dry seasons, yet escalating climate change could threaten forage supply. Here, we investigate projected climate change impacts on three forage grasses currently recommended for Ethiopian dairy systems. We determine areas of geographical suitability for each species using three climate projections generated by General Circulation Models (GCMs) and calculate their ability to meet predicted dry matter demand under four scenarios for livestock intensification and land availability. By 2050, Buffel grass (Cenchrus ciliaris) is likely to be negatively affected by climate change in regions such as Tigray, while Rhodes grass (Chloris gayana) and Napier grass (Cenchrus purpureus) may have improved suitability under future climates. Our findings suggest that feed demands could theoretically be met by production of these forage grasses under current and future climates. However, if land availability is reduced and herd composition shifts towards higher-productivity exotic breeds, forage resources will not meet cattle demand even with improved agronomic management

    Tracing the 'ninth sulfur' of the nitrogenase cofactor via a semi-synthetic approach.

    No full text
    The M-cluster is the [(homocitrate)MoFe7S9C] active site of nitrogenase that is derived from an 8Fe core assembled viacoupling and rearrangement of two [Fe4S4] clusters concomitant with the insertion of an interstitial carbon and a 'ninth sulfur'. Combining synthetic [Fe4S4] clusters with an assembly protein template, here we show that sulfite can give rise to the ninth sulfur that is incorporated in the catalytically important belt region of the cofactor after the radical S-adenosyl-L-methionine-dependent carbide insertion and the concurrent 8Fe-core rearrangement have already taken place. Based on the differential reactivity of the formed cluster species, we also propose a new [Fe8S8C] cluster intermediate, the L*-cluster, which is similar to the [Fe8S9C] L-cluster, but lacks the ninth sulfur from sulfite. This work provides a semi-synthetic tool for protein reconstitution that could be widely applicable for the functional analysis of other FeS systems

    Established and proposed roles of xanthine oxidoreductase in oxidative and reductive pathways in plants

    Get PDF
    Xanthine oxidoreductase (XOR) is among the most-intensively studied enzymes known to participate in the consumption of oxygen in cells. However, it attracted the attention of researchers due its participation in free radical production in vivo, mainly through the production of superoxide radicals. In plants, XOR is a key enzyme in purine degradation where it catalyzes the oxidation of hypoxanthine to xanthine and of xanthine to uric acid. Both reactions are accompanied by electron transfer to either NAD+ with simultaneous formation of NADH or to molecular oxygen, which results in formation of superoxides. Characterization of plant XOR mutants and isolated XOR proteins from various plant species provided evidence that the enzyme plays significant roles in plant growth, leaf senescence, fruit size, synthesis of nitrogen storage compounds, and plant-pathogen interactions. Moreover, the ability of XOR to carry out redox reactions as NADH oxidase and to produce reactive oxygen species and nitric oxide, together with a possible complementary role in abscisic acid synthesis have raised further attention on the importance of this enzyme. Based on these established and proposed functions, XOR is discussed as regulator of different processes of interest in plant biology and agriculture.The authors acknowledge the support of the research grants AGL2010-16167 to J.F.M. from the Spanish Ministry of Science and Innovation and Bi 1075/5-1 to F.B. by the Deutsche Forschungsgemeinschaft. R.E. received a JAE-Doctor grant from the Spanish Research Council (CSIC).
    corecore