273 research outputs found

    Augmentation of abscisic acid (ABA) levels by drought does not induce short-term stomatal sensitivity to CO2 in two divergent conifer species

    Get PDF
    The stomata of conifers display very little short-term response to changes in atmospheric CO2 concentration (Ca), whereas the stomatal responses of angiosperms to Ca increase in response to water stress. This behaviour of angiosperm stomata appears to be dependent on foliar levels of abscisic acid (ABAf). Here two alternative explanations for the stomatal insensitivity of conifers to Ca are tested: that conifers have either low ABAf or a higher or absent threshold for ABA-induced sensitivity. The responsiveness of stomatal conductance (gs) to a sequence of transitions in Ca (386, 100, and 600 μmol mol−1) was recorded over a range of ABAf in an angiosperm and two divergent conifer species. The different ABA levels were induced by a mild drought cycle. Although the angiosperm and conifer species showed similar proportional increases in ABAf following drought, conifer stomata remained insensitive to changes in Ca whereas angiosperm stomata showed enhanced sensitivity with increasing ABAf. The conifers, however, had much higher ABAf prior to drought than the angiosperm species, suggesting that non-sensitivity to Ca in these conifers was due to an absent or inactive response/signalling pathway rather than insufficient ABAf

    The uncertain role of rising atmospheric CO2 on global plant transpiration

    Get PDF
    As CO2 concentration in the atmosphere rises, there is a need for improved physical understanding of its impact on global plant transpiration. This knowledge gap poses a major hurdle in robustly projecting changes in the global hydrologic cycle. For this reason, here we review the different processes by which atmospheric CO2 concentration affects plant transpiration, the several uncertainties related to the complex physiological and radiative processes involved, and the knowledge gaps which need to be filled in order to improve predictions of plant transpiration. Although there is a high degree of certainty that rising CO2 will impact plant transpiration, the exact nature of this impact remains unclear due to complex interactions between CO2 and climate, and key aspects of plant morphology and physiology. The interplay between these factors has substantial consequences not only for future climate and global vegetation, but also for water availability needed for sustaining the productivity of terrestrial ecosystems. Future changes in global plant transpiration in response to enhanced CO2 are expected to be driven by water availability, atmospheric evaporative demand, plant physiological processes, emergent plant disturbances related to increasing temperatures, and the modification of plant physiology and coverage. Considering the universal sensitivity of natural and agricultural systems to terrestrial water availability we argue that reliable future projections of transpiration is an issue of the highest priority, which can only be achieved by integrating monitoring and modeling efforts to improve the representation of CO2 effects on plant transpiration in the next generation of earth system models. © 2022 The Author

    Environmental adaptation in stomatal size independent of the effects of genome size

    Get PDF
    Cell sizes are linked across multiple tissues, including stomata, and this variation is closely correlated with genome size. These associations raise the question of whether generic changes in cell size cause suboptimal changes in stomata, requiring subsequent evolution under selection for stomatal size. We tested the relationships among guard cell length, genome size and vegetation type using phylogenetically independent analyses on 67 species of the ecologically and structurally diverse family, Proteaceae. We also compared how genome and stomatal sizes varied at ancient (among genera) and more recent (within genus) levels. The observed 60-fold range in genome size in Proteaceae largely reflected the mean chromosome size. Compared with variation among genera, genome size varied much less within genera (< 6% of total variance) than stomatal size, implying evolution in stomatal size subsequent to changes in genome size. Open vegetation and closed forest had significantly different relationships between stomatal and genome sizes. Ancient changes in genome size clearly influenced stomatal size in Proteaceae, but adaptation to habitat strongly modified the genome-stomatal size relationship. Direct adaptation to the environment in stomatal size argues that new proxies for past concentrations of atmospheric CO2 that incorporate stomatal size are superior to older models based solely on stomatal frequency.Gregory J. Jordan, Raymond J. Carpenter, Anthony Koutoulis, Aina Price and Timothy J. Brodrib

    Contrasting water use, stomatal regulation, embolism resistance, and drought responses of two co-occurring mangroves

    Get PDF
    The physiological mechanisms underlying drought responses are poorly documented in mangroves, which experience nearly constant exposure to saline water. We measured gas exchange, foliar abscisic acid (ABA) concentration, and vulnerability to embolism in a soil water-withholding experiment of two co-occurring mangroves, Avicennia marina (Forsskål) Vierhapper (Verbenaceae) and Bruguiera gymnorrhiza (L.) Savigny (Rhizophoraceae). A. marina showed higher photosynthesis and transpiration than B. gymnorrhiza under well-watered conditions. Cavitation resistance differed significantly between species, with 50% cavitation occurring at a water potential (P50) of −8.30 MPa for A. marina and −2.83 MPa for B. gymnorrhiza. This large difference in cavitation resistance was associated with differences in stomatal closure and leaf wilting. The rapid stomatal closure of B. gymnorrhiza was correlated with ABA accumulation as water potential declined. Meanwhile, stomatal closure and declining water potentials in A. marina were not associated with ABA accumulation. The safety margins, calculated as the difference between stomatal closure and embolism spread, differed between these two species (1.59 MPa for A. marina vs. 0.52 MPa for B. gymnorrhiza). Therefore, A. marina adopts a drought tolerance strategy with high cavitation resistance, while B. gymnorrhiza uses a drought avoidance-like strategy with ABA-related sensitive stomatal control to protect its vulnerable xylem

    Floral mass per area and water maintenance traits are correlated with floral longevity in Paphiopedilum (Orchidaceae)

    Get PDF
    Floral longevity (FL) determines the balance between pollination success and flower maintenance. While a longer floral duration enhances the ability of plants to attract pollinators, it can be detrimental if it negatively affects overall plant fitness. Longer-lived leaves display a positive correlation with their dry mass per unit area, which influences leaf construction costs and physiological functions. However, little is known about the association among FL and floral dry mass per unit area (FMA) and water maintenance traits. We investigated whether increased FL might incur similar costs. Our assessment of 11 species of Paphiopedilum (slipper orchids) considered the impact of FMA and flower water-maintenance characteristics on FL. We found a positive relationship between FL and FMA. Floral longevity showed significant correlations with osmotic potential at the turgor loss and bulk modulus of elasticity but not with FA. Neither the size nor the mass per area was correlated between leaves and flowers, indicating that flower and leaf economic traits evolved independently. Therefore, our findings demonstrate a clear relationship between FL and the capacity to maintain water status in the flower. These economic constraints also indicate that extending the flower life span can have a high physiological cost in Paphiopedilum

    A systematic review of high-fibre dietary therapy in diverticular disease

    Get PDF
    The exact pathogenesis of diverticular disease of the sigmoid colon is not well established. However, the hypothesis that a low-fibre diet may result in diverticulosis and a high-fibre diet will prevent symptoms or complications of diverticular disease is widely accepted. The aim of this review is to assess whether a high-fibre diet can improve symptoms and/or prevent complications of diverticular disease of the sigmoid colon and/or prevent recurrent diverticulitis after a primary episode. Clinical studies were eligible for inclusion if they assessed the treatment of diverticular disease or the prevention of recurrent diverticulitis with a high-fibre diet. The following exclusion criteria were used for study selection: studies without comparison of the patient group with a control group. No studies concerning prevention of recurrent diverticulitis with a high-fibre diet met our inclusion criteria. Three randomised controlled trials (RCT) and one case-control study were included in this systematic review. One RCT of moderate quality showed no difference in the primary endpoints. A second RCT of moderate quality and the case-control study found a significant difference in favour of a high-fibre diet in the treatment of symptomatic diverticular disease. The third RCT of moderate quality found a significant difference in favour of methylcellulose (fibre supplement). This study also showed a placebo effect. High-quality evidence for a high-fibre diet in the treatment of diverticular disease is lacking, and most recommendations are based on inconsistent level 2 and mostly level 3 evidence. Nevertheless, high-fibre diet is still recommended in several guideline

    Benefits, Barriers and Enablers of Breastfeeding: Factor Analysis of Population Perceptions in Western Australia

    Get PDF
    Objective: The objective of this study was to investigate knowledge and community perceptions of breastfeeding in Western Australia using a factor analysis approach. Methods: Data were pooled from five Nutrition Monitoring Survey Series which included information on breastfeeding from 4,802 Western Australian adults aged 18–64 years. Tetrachoric factor analysis was conducted for data reduction and significant associations identified using logistic, ordinal and poisson regression analyses. Results: Four factors were derived for benefits (it’s natural, good nutrition, good for the baby, and convenience), barriers (breastfeeding problems, poor community acceptability, having to go back to work, and inconvenience) and for enablers (breastfeeding education, community support, family support and not having to work).As assessed by standardized odds ratios the most important covariates across benefit factors were: importance of breastfeeding (ORs range from 1.22–1.44),female gender (ORs range from 0.80 to 1.46), being able to give a time for how long a baby should be breastfed (ORs range from 0.96 to 1.27) and education (less than high school to university completion) (ORs range from 0.95 to 1.23); the most important covariate across barrier factors was being able to give a time for how long a baby should be breastfed (ORs range from 0.89 to 1.93); and the most important covariates across all enabling factors were education (ORs range from 1.14 to1.32) and being able to give a time for how long a baby should be breastfed (ORs range from 1.17 to 1.42).Conclusions: Being female, rating breastfeeding as important, believing that babies should be breastfed for a period of time and education accounted for most of the statistically significant associations. The differences between male and female perceptions require investigation particularly in relation to returning to work
    corecore