27 research outputs found

    Phosphorylation adjacent to the nuclear localization signal of human dUTPase abolishes nuclear import: Structural and mechanistic insights

    Get PDF
    Phosphorylation adjacent to nuclear localization signals (NLSs) is involved in the regulation of nucleocytoplasmic transport. The nuclear isoform of human dUTPase, an enzyme that is essential for genomic integrity, has been shown to be phosphorylated on a serine residue (Ser11) in the vicinity of its nuclear localization signal; however, the effect of this phosphorylation is not yet known. To investigate this issue, an integrated set of structural, molecular and cell biological methods were employed. It is shown that NLS-adjacent phosphorylation of dUTPase occurs during the M phase of the cell cycle. Comparison of the cellular distribution of wild-type dUTPase with those of hyperphosphorylation- and hypophosphorylation-mimicking mutants suggests that phosphorylation at Ser11 leads to the exclusion of dUTPase from the nucleus. Isothermal titration microcalorimetry and additional independent biophysical techniques show that the interaction between dUTPase and importin-alpha, the karyopherin molecule responsible for 'classical' NLS binding, is weakened significantly in the case of the S11E hyperphosphorylation-mimicking mutant. The structures of the importin-alpha-wild-type and the importin-alpha-hyperphosphorylation-mimicking dUTPase NLS complexes provide structural insights into the molecular details of this regulation. The data indicate that the posttranslational modification of dUTPase during the cell cycle may modulate the nuclear availability of this enzyme

    Calpain-Catalyzed Proteolysis of Human dUTPase Specifically Removes the Nuclear Localization Signal Peptide

    Get PDF
    Calpain proteases drive intracellular signal transduction via specific proteolysis of multiple substrates upon Ca(2+)-induced activation. Recently, dUTPase, an enzyme essential to maintain genomic integrity, was identified as a physiological calpain substrate in Drosophila cells. Here we investigate the potential structural/functional significance of calpain-activated proteolysis of human dUTPase.Limited proteolysis of human dUTPase by mammalian m-calpain was investigated in the presence and absence of cognate ligands of either calpain or dUTPase. Significant proteolysis was observed only in the presence of Ca(II) ions, inducing calpain action. The presence or absence of the dUTP-analogue α,ÎČ-imido-dUTP did not show any effect on Ca(2+)-calpain-induced cleavage of human dUTPase. The catalytic rate constant of dUTPase was unaffected by calpain cleavage. Gel electrophoretic analysis showed that Ca(2+)-calpain-induced cleavage of human dUTPase resulted in several distinctly observable dUTPase fragments. Mass spectrometric identification of the calpain-cleaved fragments identified three calpain cleavage sites (between residues (4)SE(5); (7)TP(8); and (31)LS(32)). The cleavage between the (31)LS(32) peptide bond specifically removes the flexible N-terminal nuclear localization signal, indispensable for cognate localization.Results argue for a mechanism where Ca(2+)-calpain may regulate nuclear availability and degradation of dUTPase

    Recensiones

    No full text

    Recensiones

    No full text

    Mean platelet volume as an inflammation marker in active pulmonary tuberculosis

    Get PDF
    Background: The mean platelet volume (MPV) reflects the size of platelets. It has been shown to be inversely correlated with level of the inflammation in some chronic inflammatory diseases. This prospective study aims to show the usability of MPV as an inflammation marker in patients with active pulmonary tuberculosis (PTB) by comparison with healthy controls. In addition, its relationships with other inflammatory markers such as C-reactive protein (CRP) and the erythrocyte sedimentation rate (ESR) as well as with the radiological extent of disease were examined. Methods: This study included 82 patients with active PTB and 95 healthy subjects (control group). Whole blood counts, CRP level, and ESR were compared between the two groups. In the PTB group, the relationships between the radiological extent of disease and the MPV and other inflammation markers were investigated. Results: The MPV was 7.74 ± 1.33/”L in the PTB group and 8.20 ± 1.13/”L in the control group (p = 0.005). The blood platelet count, CRP level, and ESR were significantly higher in the active PTB group than in the control group (p < 0.0001). In the PTB group, CRP levels (r = 0.26, p = 0.003) and ESR (r = 0.39, p = 0.003), but not MPV (p = 0.80), were significantly correlated with the radiologic extent of the disease. Conclusions: The MPV was lower in patients with PTB than in healthy controls, however, the difference was limited. The MPV does not reflect the severity of the disease. The use of MPV as an inflammation marker and a negative acute-phase reactant in PTB does not seem to be reliable
    corecore