147 research outputs found
Kroll-carbons based on silica and alumina templates as high-rate electrode materials in electrochemical double-layer capacitors
Hierarchical Kroll-carbons (KCs) with combined micro- and mesopore systems are prepared from silica and alumina templates by a reductive carbochlorination reaction of fumed silica and alumina nanoparticles inside a dense carbon matrix. The resulting KCs offer specific surface areas close to 2000 m2 gâ1 and total pore volumes exceeding 3 cm3 gâ1, resulting from their hierarchical pore structure. High micropore volumes of 0.39 cm3 gâ1 are achieved in alumina-based KCs due to the enhanced carbon etching reaction being mainly responsible for the evolution of porosity. Mesopore sizes are uniform and precisely controllable over a wide range by the template particle dimensions. The possibility of directly recycling the process exhaust gases for the template synthesis and the use of renewable carbohydrates as the carbon source lead to a scalable and efficient alternative to classical hard- and soft templating approaches for the production of mesoporous and hierarchical carbon materials. Silica- and alumina-based Kroll-carbons are versatile electrode materials in electrochemical double-layer capacitors (EDLCs). Specific capacitances of up to 135 F gâ1 in an aqueous electrolyte (1 M sulfuric acid) and 174 F gâ1 in ionic liquid (1-ethyl-3-methylimidazolium tetrafluoroborate) are achieved when measured in a symmetric cell configuration up to voltages of 0.6 and 2.5 V, respectively. 90% of the capacitance can be utilized at high current densities (20 A gâ1) and room temperature rendering Kroll-carbons as attractive materials for EDLC electrodes resulting in high capacities and high rate performance due to the combined presence of micro- and mesopores
N-ftaloil-glicin-hidroksamska kiselina kao kelator ĆŸeljeza u serumu ĆĄtakora
The aim of this study was to investigate the activity of N-phthaloyl-glycine-hydroxamic acid (Phth-Gly-HA) as a new iron chelator in vivo to be used in iron overload diseases. After intraperitoneal application of Phth-Gly-HA to male rats (1 mg kg1 body mass) once a day for seven days, iron serum level decreased by 21%, whereas the iron value dropped by 32% in female rats (1.5 mg kg1 body mass). The results indicate that the tested substance has the ability to bind serum iron by complexation. Besides transferrin iron release, mobilization of ferritin iron is also possibleU cilju pronalaĆŸenja novog efikasnog kelatora koji bi mogao posluĆŸiti u lijeÄenju bolesti izazvanih viĆĄkom ĆŸeljeza, u ovom je radu ispitano djelovanje N-ftaloil-glicin-hidroksamske kiseline (Phth-Gly-HA) in vivo. IstraĆŸivan je utjecaj kelatora na razinu ĆŸeljeza u serumu ĆĄtakora nakon intraperitonealne primjene vodene otopine Phth-Gly-HA (0,1 mg mL1) jednom dnevno tijekom 7 dana. Kontrolne su ĆŸivotinje primale fizioloĆĄku otopinu. Kod muĆŸjaka injektiranje test supstancije (1 mg kg1) uzrokovalo je pad serumskog ĆŸeljeza za 21%. Kod ĆŸenki je nakon tretmana (1,5 mg kg1) izmjereno sniĆŸenje razine ĆŸeljeza za 35%. Rezultati pokazuju da ispitivana supstanca ima sposobnost kompleksiranja serumskog ĆŸeljeza, preteĆŸno transferinskog, ali da postoji moguÄnost mobilizacije ĆŸeljeza i iz feritinskih zaliha
Adsorption of hydroxamate siderophores and EDTA on goethite in the presence of the surfactant sodium dodecyl sulfate
Siderophore-promoted iron acquisition by microorganisms usually occurs in the presence of other organic molecules, including biosurfactants. We have investigated the influence of the anionic surfactant sodium dodecyl sulfate (SDS) on the adsorption of the siderophores DFOB (cationic) and DFOD (neutral) and the ligand EDTA (anionic) onto goethite (α-FeOOH) at pH 6. We also studied the adsorption of the corresponding 1:1 Fe(III)-ligand complexes, which are products of the dissolution process. Adsorption of the two free siderophores increased in a similar fashion with increasing SDS concentration, despite their difference in molecule charge. In contrast, SDS had little effect on the adsorption of EDTA. Adsorption of the Fe-DFOB and Fe-DFOD complexes also increased with increasing SDS concentrations, while adsorption of Fe-EDTA decreased. Our results suggest that hydrophobic interactions between adsorbed surfactants and siderophores are more important than electrostatic interactions. However, for strongly hydrophilic molecules, such as EDTA and its iron complex, the influence of SDS on their adsorption seems to depend on their tendency to form inner-sphere or outer-sphere surface complexes. Our results demonstrate that surfactants have a strong influence on the adsorption of siderophores to Fe oxides, which has important implications for siderophore-promoted dissolution of iron oxides and biological iron acquisition
Interactions of the periplasmic binding protein CeuE with Fe(III) n-LICAM(4-) siderophore analogues of varied linker length
Bacteria use siderophores to mediate the transport of essential Fe(III) into the cell. In Campylobacter jejuni the periplasmic binding protein CeuE, an integral part of the Fe(III) transport system, has adapted to bind tetradentate siderophores using a His and a Tyr side chain to complete the Fe(III) coordination. A series of tetradentate siderophore mimics was synthesized in which the length of the linker between the two iron-binding catecholamide units was increased from four carbon atoms (4-LICAM(4-)) to five, six and eight (5-, 6-, 8-LICAM(4-), respectively). Co-crystal structures with CeuE showed that the inter-planar angles between the iron-binding catecholamide units in the 5-, 6- and 8-LICAM(4-) structures are very similar (111°, 110° and 110°) and allow for an optimum fit into the binding pocket of CeuE, the inter-planar angle in the structure of 4-LICAM(4-) is significantly smaller (97°) due to restrictions imposed by the shorter linker. Accordingly, the protein-binding affinity was found to be slightly higher for 5- compared to 4-LICAM(4-) but decreases for 6- and 8-LICAM(4-). The optimum linker length of five matches that present in natural siderophores such as enterobactin and azotochelin. Site-directed mutagenesis was used to investigate the relative importance of the Fe(III)-coordinating residues H227 and Y288
Complexes Formed in Solution Between Vanadium(IV)/(V) and the Cyclic Dihydroxamic Acid Putrebactin or Linear Suberodihydroxamic Acid
The ability of microbial siderophores to coordinate metal ions, particularly Fe(III), continues to generate interest in the poten-tial applications of these bioligands in the environment and medicine.13 Siderophores produced by terrestrial and marin
Purification and Structural Characterization of Siderophore (Corynebactin) from Corynebacterium diphtheriae
During infection, Corynebacterium diphtheriae must compete with host iron-sequestering mechanisms for iron. C. diphtheriae can acquire iron by a siderophore-dependent iron-uptake pathway, by uptake and degradation of heme, or both. Previous studies showed that production of siderophore (corynebactin) by C. diphtheriae is repressed under high-iron growth conditions by the iron-activated diphtheria toxin repressor (DtxR) and that partially purified corynebactin fails to react in chemical assays for catecholate or hydroxamate compounds. In this study, we purified corynebactin from supernatants of low-iron cultures of the siderophore-overproducing, DtxR-negative mutant strain C. diphtheriae C7(ÎČ) ÎdtxR by sequential anion-exchange chromatography on AG1-X2 and Source 15Q resins, followed by reverse-phase high-performance liquid chromatography (RP-HPLC) on Zorbax C8 resin. The Chrome Azurol S (CAS) chemical assay for siderophores was used to detect and measure corynebactin during purification, and the biological activity of purified corynebactin was shown by its ability to promote growth and iron uptake in siderophore-deficient mutant strains of C. diphtheriae under iron-limiting conditions. Mass spectrometry and NMR analysis demonstrated that corynebactin has a novel structure, consisting of a central lysine residue linked through its α- and Δ- amino groups by amide bonds to the terminal carboxyl groups of two different citrate residues. Corynebactin from C. diphtheriae is structurally related to staphyloferrin A from Staphylococcus aureus and rhizoferrin from Rhizopus microsporus in which d-ornithine or 1,4-diaminobutane, respectively, replaces the central lysine residue that is present in corynebactin
In Situ NMR Spectroscopy of Supercapacitors: Insight into the Charge Storage Mechanism
Electrochemical capacitors, commonly known as supercapacitors, are important energy storage devices with high power capabilities and long cycle lives. Here we report the development and application of in situ nuclear magnetic resonance(NMR) methodologies to study changes at the electrodeâelectrolyte interface in working devices as they charge and discharge. For a supercapacitor comprising activated carbon electrodes and an organic electrolyte, NMR experiments carried out at different charge states allow quantification of the number of charge storing species and show that there are at least two distinct charge storage regimes. At cell voltages below 0.75 V, electrolyte anions are increasingly desorbed from the carbon micropores at the negative electrode, while at the positive electrode there is little change in the number of anions that are adsorbed as the voltage is increased. However, above a cell voltage of 0.75 V, dramatic increases in the amount of adsorbed anions in the positive electrode are observed while anions continue to be desorbed at the negative electrode. NMR experiments with simultaneous cyclic voltammetry show that supercapacitor charging causes marked changes to the local environments of charge storing species, with periodic changes of their chemical shift observed. NMR calculations on a model carbon fragment show that the addition and removal of electrons from a delocalized system should lead to considerable increases in the nucleus-independent chemical shift of nearby species, in agreement with our experimental observations
Protonation States of Remote Residues Affect Binding-Release Dynamics of the Ligand but not the Conformation of apo Ferric Binding Protein
We have studied the apo (Fe3+ free) form of periplasmic ferric binding
protein (FbpA) under different conditions and we have monitored the changes in
the binding and release dynamics of H2PO4- that acts as a synergistic anion in
the presence of Fe3+. Our simulations predict a dissociation constant of
2.20.2 mM which is in remarkable agreement with the experimentally
measured value of 2.30.3 mM under the same ionization strength and pH
conditions. We apply perturbations relevant for changes in environmental
conditions as (i) different values of ionic strength (IS), and (ii) protonation
of a group of residues to mimic a different pH environment. Local perturbations
are also studied by protonation or mutation of a site distal to the binding
region that is known to mechanically manipulate the hinge-like motions of FbpA.
We find that while the average conformation of the protein is intact in all
simulations, the H2PO4- dynamics may be substantially altered by the changing
conditions. In particular, the bound fraction which is 20 for the wild type
system is increased to 50 with a D52A mutation/protonation and further to
over 90 at the protonation conditions mimicking those at pH 5.5. The change
in the dynamics is traced to the altered electrostatic distribution on the
surface of the protein which in turn affects hydrogen bonding patterns at the
active site. The observations are quantified by rigorous free energy
calculations. Our results lend clues as to how the environment versus single
residue perturbations may be utilized for regulation of binding modes in hFbpA
systems in the absence of conformational changes.Comment: 26 pages, 4 figure
- âŠ