8,732 research outputs found

    The Potts-q random matrix model : loop equations, critical exponents, and rational case

    Get PDF
    In this article, we study the q-state Potts random matrix models extended to branched polymers, by the equations of motion method. We obtain a set of loop equations valid for any arbitrary value of q. We show that, for q=2-2 \cos {l \over r} \pi (l, r mutually prime integers with l < r), the resolvent satisfies an algebraic equation of degree 2 r -1 if l+r is odd and r-1 if l+r is even. This generalizes the presently-known cases of q=1, 2, 3. We then derive for any 0 \leq q \leq 4 the Potts-q critical exponents and string susceptibility.Comment: 7 pages, submitted to Phys. Letters

    Improved Smoothing Algorithms for Lattice Gauge Theory

    Get PDF
    The relative smoothing rates of various gauge field smoothing algorithms are investigated on O(a2){\cal O}(a^2)-improved \suthree Yang--Mills gauge field configurations. In particular, an O(a2){\cal O}(a^2)-improved version of APE smearing is motivated by considerations of smeared link projection and cooling. The extent to which the established benefits of improved cooling carry over to improved smearing is critically examined. We consider representative gauge field configurations generated with an O(a2){\cal O}(a^2)-improved gauge field action on \1 lattices at β=4.38\beta=4.38 and \2 lattices at β=5.00\beta=5.00 having lattice spacings of 0.165(2) fm and 0.077(1) fm respectively. While the merits of improved algorithms are clearly displayed for the coarse lattice spacing, the fine lattice results put the various algorithms on a more equal footing and allow a quantitative calibration of the smoothing rates for the various algorithms. We find the relative rate of variation in the action may be succinctly described in terms of simple calibration formulae which accurately describe the relative smoothness of the gauge field configurations at a microscopic level

    A slip model for micro/nano gas flows induced by body forces

    Full text link
    A slip model for gas flows in micro/nano-channels induced by external body forces is derived based on Maxwell's collision theory between gas molecules and the wall. The model modifies the relationship between slip velocity and velocity gradient at the walls by introducing a new parameter in addition to the classic Tangential Momentum Accommodation Coefficient. Three-dimensional Molecular Dynamics simulations of helium gas flows under uniform body force field between copper flat walls with different channel height are used to validate the model and to determine this new parameter

    Infrared and ultraviolet properties of the Landau gauge quark propagator

    Full text link
    We present a current summary of a program to study the quark propagator using lattice QCD. We use the Overlap and ``Asqtad'' quark actions on a number of lattice ensembles to assess systematic errors. We comment on the place of this work amongst studies of QCD Green's functions in other formulations. A preliminary calculation of the running quark mass is presented.Comment: 7 pages, Contribution to LHP03, Cairn

    General Algorithm For Improved Lattice Actions on Parallel Computing Architectures

    Get PDF
    Quantum field theories underlie all of our understanding of the fundamental forces of nature. The are relatively few first principles approaches to the study of quantum field theories [such as quantum chromodynamics (QCD) relevant to the strong interaction] away from the perturbative (i.e., weak-coupling) regime. Currently the most common method is the use of Monte Carlo methods on a hypercubic space-time lattice. These methods consume enormous computing power for large lattices and it is essential that increasingly efficient algorithms be developed to perform standard tasks in these lattice calculations. Here we present a general algorithm for QCD that allows one to put any planar improved gluonic lattice action onto a parallel computing architecture. High performance masks for specific actions (including non-planar actions) are also presented. These algorithms have been successfully employed by us in a variety of lattice QCD calculations using improved lattice actions on a 128 node Thinking Machines CM-5. {\underline{Keywords}}: quantum field theory; quantum chromodynamics; improved actions; parallel computing algorithms

    In-plane effects on segmented-mirror control

    Get PDF
    Extremely large optical telescopes are being designed with primary mirrors composed of hundreds of segments. The “out-of-plane” piston, tip, and tilt degrees of freedom of each segment are actively controlled using feedback from relative height measurements between neighboring segments. The “in-plane” segment translations and clocking (rotation) are not actively controlled; however, in-plane motions affect the active control problem in several important ways, and thus need to be considered. We extend earlier analyses by constructing the “full” interaction matrix that relates the height, gap, and shear motion at sensor locations to all six degrees of freedom of segment motion, and use this to consider three effects. First, in-plane segment clocking results in height discontinuities between neighboring segments that can lead to a global control system response. Second, knowledge of the in-plane motion is required both to compensate for this effect and to compensate for sensor installation errors, and thus, we next consider the estimation of in-plane motion and the associated noise propagation characteristics. In-plane motion can be accurately estimated using measurements of the gap between segments, but with one unobservable mode in which every segment clocks by an equal amount. Finally, we examine whether in-plane measurements (gap and/or shear) can be used to estimate out-of-plane segment motion; these measurements can improve the noise multiplier for the “focus-mode” of the segmented-mirror array, which involves pure dihedral angle changes between segments and is not observable with only height measurements

    Scaling Behavior of the Landau Gauge Overlap Quark Propagator

    Get PDF
    The properties of the momentum space quark propagator in Landau gauge are examined for the overlap quark action in quenched lattice QCD. Numerical calculations are done on three lattices with different lattice spacings and similar physical volumes to explore the approach of the quark propagator towards the continuum limit. We have calculated the nonperturbative momentum-dependent wavefunction renormalization function Z(p2)Z(p^2) and the nonperturbative mass function M(p2)M(p^2) for a variety of bare quark masses and extrapolate to the chiral limit. We find the behavior of Z(p2)Z(p^2) and M(p2)M(p^2) are in good agreement for the two finer lattices in the chiral limit. The quark condensate is also calculated.Comment: 3 pages, Lattice2003(Chiral fermions

    Symmetric Galerkin boundary element method.

    No full text
    This review concerns a methodology for solving numerically, to engineering purposes, boundary and initial-boundary value roblems by a peculiar approach characterized by the following features: the continuous formulation is centered on integral equations based on the combined use of single-layer and double-layer sources, so that the integral operator turns out to be symmetric with respect to a suitable bilinear form; the discretization is performed either on a variational basis or by a Galerkin weighted residual procedure, the interpolation and weight functions being chosen so that the variables in the approximate formulation are generalized variables in Prager's sense. As main consequences of the above provisions, symmetry is exhibited by matrices with a key role in the algebraized versions, some quadratic forms have a clear energy meaning, variational properties characterize the solutions and other results, invalid in traditional boundary element methods, enrich the theory underlying the computational applications. The present survey outlines recent theoretical and computational developments of the title methodology with particular reference to linear elasticity, elastoplasticity, fracture mechanics, time-dependent problems, variational approaches, singular integrals, approximation issues, sensitivity analysis, coupling of boundary and finite elements, computer implementations. Areas and aspects which at present require further research are dentified and comparative assessments are attempted with respect to traditional boundary integral-element methods

    Electromagnetic Hadronic Form-Factors

    Full text link
    We present a calculation of the nucleon electromagnetic form-factors as well as the pion and rho to pion transition form-factors in a hybrid calculation with domain wall valence quarks and improved staggered (Asqtad) sea quarks.Comment: 3 pages, 5 figures, Lattice2004(spectrum
    corecore