research

The Potts-q random matrix model : loop equations, critical exponents, and rational case

Abstract

In this article, we study the q-state Potts random matrix models extended to branched polymers, by the equations of motion method. We obtain a set of loop equations valid for any arbitrary value of q. We show that, for q=2-2 \cos {l \over r} \pi (l, r mutually prime integers with l < r), the resolvent satisfies an algebraic equation of degree 2 r -1 if l+r is odd and r-1 if l+r is even. This generalizes the presently-known cases of q=1, 2, 3. We then derive for any 0 \leq q \leq 4 the Potts-q critical exponents and string susceptibility.Comment: 7 pages, submitted to Phys. Letters

    Similar works

    Available Versions

    Last time updated on 05/06/2019