1,634 research outputs found

    Small Fermi energy, zero point fluctuations and nonadiabaticity in MgB2_2

    Full text link
    Small Fermi energy effects are induced in MgB2_2 by the low hole doping in the σ\sigma bands which are characterized by a Fermi energy EFσ0.5E_{\rm F}^\sigma \sim 0.5 eV. We show that, due to the particularly strong deformation potential relative to the E2gE_{2g} phonon mode, lattice fluctuations are reflected in strong fluctuations in the electronic band structure. Quantum fluctuations associated to the zero-point lattice motion are responsible for an uncertainty of the Fermi energy of the order of the Fermi energy itself, leading to the breakdown of the adiabatic principle underlying the Born-Oppenheimer approximation in MgB2_2 even if ωph/EF0.10.2\omega_{\rm ph}/E_{\rm F} \sim 0.1-0.2, where ωph\omega_{\rm ph} are the characteristic phonon frequencies. This amounts to a new nonadiabatic regime, which could be relevant to other unconventional superconductors.Comment: to appear on Physical Review

    Three-dimensional MgB2_{2}-type superconductivity in hole-doped diamond

    Full text link
    We substantiate by calculations that the recently discovered superconductivity below 4 K in 3% boron-doped diamond is caused by electron-phonon coupling of the same type as in MgB2_2, albeit in 3 dimensions. Holes at the top of the zone-centered, degenerate σ\sigma-bonding valence band couple strongly to the optical bond-stretching modes. The increase from 2 to 3 dimensions reduces the mode-softening crucial for TcT_{c} reaching 40 K in MgB2._{2}. Even if diamond had the same \emph{bare} coupling constant as MgB2,_{2}, which could be achieved with 10% doping, TcT_{c} would only be 25 K. Superconductivity above 1 K in Si (Ge) requires hole-doping beyond 5% (10%).Comment: revised version, accepted by PR

    Effect of Pressure on Superconducting Ca-intercalated Graphite CaC6_6

    Full text link
    The pressure effect on the superconducting transition temperature (TcT_c) of the newly-discovered Ca-intercalated graphite compound CaC6_6 has been investigated up to \sim 16 kbar. TcT_c is found to increase under pressure with a large relative ratio Δ\DeltaTcT_c/TcT_c of \approx +0.4 %/kbar. Using first-principles calculations, we show that the large and positive effect of pressure on TcT_c can be explained in the scope of electron-phonon theory due to the presence of a soft phonon branch associated to in-plane vibrations of Ca atoms. Implications of the present findings on the current debate about the superconducting mechanism in graphite intercalation compounds are discussed.Comment: 6 pages, 5 figs, final PRB versio

    A combined experimental and computational study of the pressure dependence of the vibrational spectrum of solid picene C_22H_14

    Full text link
    We present high-quality optical data and density functional perturbation theory calculations for the vibrational spectrum of solid picene (C22_{22}H14_{14}) under pressure up to 8 GPa. First-principles calculations reproduce with a remarkable accuracy the pressure effects on both frequency and intensities of the phonon peaks experimentally observed . Through a detailed analysis of the phonon eigenvectors, We use the projection on molecular eigenmodes to unambiguously fit the experimental spectra, resolving complicated spectral structures, in a system with hundreds of phonon modes. With these projections, we can also quantify the loss of molecular character under pressure. Our results indicate that picene, despite a \sim 20 % compression of the unit cell, remains substantially a molecular solid up to 8 GPa, with phonon modes displaying a smooth and uniform hardening with pressure. The Grueneisen parameter of the 1380 cm^{-1} a_1 Raman peak (γp=0.1\gamma_p=0.1) is much lower than the effective value (γd=0.8\gamma_d=0.8) due to K doping. This is an indication that the phonon softening in K doped samples is mainly due to charge transfer and electron-phonon coupling.Comment: Replaced with final version (PRB

    Study of temperature dependent atomic correlations in MgB2_{2}

    Full text link
    We have studied the evolution with temperature of the local as well as the average crystal structure of MgB2_2 using the real-space atomic pair distribution function (PDF) measured by high resolution neutron powder diffraction. We have investigated the correlations of the B-B and B-Mg nearest neighbor pair motion by comparing, in the wide temperature range from T=10 K up to T=600 K, the mean-square displacements (MSD) of single atoms with the mean-square relative displacements (MSRD) obtained from the PDF peak linewidths. The results show that the single atom B and Mg vibrations are mostly decoupled from each other, with a small predominance of positive (in phase) correlation factor for both the B-B and B-Mg pairs. The small positive correlation is almost temperature independent, in contrast with our theoretical calculations; this can be a direct consequence of the strong decay processes of the E2gE_{2g} anharmonic phonons

    Vibrational spectrum of solid picene (C_22H_14)

    Full text link
    Recently, Mitsuhashi et al., have observed superconductivity with transition temperature up to 18 K in potassium doped picene (C22H14), a polycyclic aromatic hydrocarbon compound [Nature 464 (2010) 76]. Theoretical analysis indicate the importance of electron-phonon coupling in the superconducting mechanisms of these systems, with different emphasis on inter- and intra-molecular vibrations, depending on the approximations used. Here we present a combined experimental and ab-initio study of the Raman and infrared spectrum of undoped solid picene, which allows us to unanbiguously assign the vibrational modes. This combined study enables the identification of the modes which couple strongly to electrons and hence can play an important role in the superconducting properties of the doped samples

    Phonon softening and dispersion in the 1D Holstein model of spinless fermions

    Get PDF
    We investigate the effect of electron-phonon interaction on the phononic properties in the one-dimensional half-filled Holstein model of spinless fermions. By means of determinantal Quantum Monte Carlo simulation we show that the behavior of the phonon dynamics gives a clear signal of the transition to a charge-ordered phase, and the phase diagram obtained in this way is in excellent agreement with previous DMRG results. By analyzing the phonon propagator we extract the renormalized phonon frequency, and study how it first softens as the transition is approached and then subsequently hardens in the charge-ordered phase. We then show how anharmonic features develop in the phonon propagator, and how the interaction induces a sizable dispersion of the dressed phonon in the non-adiabatic regime.Comment: 7 pages, 6 figure

    Single 20meV boson mode in KFe2As2 detected by point-contact spectroscopy

    Full text link
    We report an experimental and theoretical investigation of the electron-boson interaction in KFe2As2 by point-contact (PC) spectroscopy, model, and ab-initio LDA-based calculations for the standard electron-phonon Eliashberg function. The PC spectrum viz. the second derivative of the I - V characteristic of representative PC exhibits a pronounced maximum at about 20meV and surprisingly a featureless behavior at lower and higher energies. We discuss phonon and non-phonon (excitonic) mechanisms for the origin of this peak. Analysis of the underlying source of this peak may be important for the understanding of serious puzzles of superconductivity in this type of compounds.Comment: 10 pages, 6 figs., to be published in PR

    Phonon Mode Spectroscopy, Electron-Phonon Coupling and the Metal-Insulator Transition in Quasi-One-Dimensional M2Mo6Se6

    Full text link
    We present electronic structure calculations, electrical resistivity data and the first specific heat measurements in the normal and superconducting states of quasi-one-dimensional M2Mo6Se6 (M = Tl, In, Rb). Rb2Mo6Se6 undergoes a metal-insulator transition at ~170K: electronic structure calculations indicate that this is likely to be driven by the formation of a dynamical charge density wave. However, Tl2Mo6Se6 and In2Mo6Se6 remain metallic down to low temperature, with superconducting transitions at Tc = 4.2K and 2.85K respectively. The absence of any metal-insulator transition in these materials is due to a larger in-plane bandwidth, leading to increased inter-chain hopping which suppresses the density wave instability. Electronic heat capacity data for the superconducting compounds reveal an exceptionally low density of states DEF = 0.055 states eV^-1 atom^-1, with BCS fits showing 2Delta/kBTc >= 5 for Tl2Mo6Se6 and 3.5 for In2Mo6Se6. Modelling the lattice specific heat with a set of Einstein modes, we obtain the approximate phonon density of states F(w). Deconvolving the resistivity for the two superconductors then yields their electron-phonon transport coupling function a^2F(w). In Tl2Mo6Se6 and In2Mo6Se6, F(w) is dominated by an optical "guest ion" mode at ~5meV and a set of acoustic modes from ~10-30meV. Rb2Mo6Se6 exhibits a similar spectrum; however, the optical phonon has a lower intensity and is shifted to ~8meV. Electrons in Tl2Mo6Se6 couple strongly to both sets of modes, whereas In2Mo6Se6 only displays significant coupling in the 10-18meV range. Although pairing is clearly not mediated by the guest ion phonon, we believe it has a beneficial effect on superconductivity in Tl2Mo6Se6, given its extraordinarily large coupling strength and higher Tc compared to In2Mo6Se6.Comment: 16 pages, 13 figure
    corecore