64 research outputs found

    Modeling composition of Ca-Fe-Mg carbonates in a natural CO2 reservoir

    Get PDF
    Understanding the physical-chemical features of liquid, gas and solid phases in natural analogue reservoirs of Carbon Capture and Sequestration (CCS) site is fundamental as they can provide key data for building up both conceptual and numerical modeling of reaction path for gas-water-rock interaction in high pCO2 systems. The aim of this work is improve the knowledge about these processes, by employing appropriate methods for compositional data on a case study, focusing on the solid (minerals) phases. In the early eighties, the PSS1 well (Eastern Tuscany, Central Italy), drilled down to almost 5,000 m for oil exploration by ENI (Italian National Agency of Hydrocarbons), intercepted a high pressure (≈700 bar) CO2 reservoir at the temperature of 120 °C. The reservoir rocks in the fertile horizon, located at about 3,800 m, consist of altered volcanic deposits interbedded with gypsumdolomite- bearing evaporites (“Burano Formation”). Surveys for determining the actual paragenesis of volcanic rocks, carried out on the drill core samples, corresponded to the top of CO2 reservoir (3,864-3,871 m depths from surface on the PSS1 bore-well log). Quartz, Ca-Fe-Mg carbonates, clay minerals (illite and chlorite series) and Fe-Ti oxides were found as principal mineralogical phases. Electron Microprobe Analysis on the carbonates has allowed to recognize the presence of ankerite and calcites. Compositional data, related to atomic % content of Ca, Fe, and Mg in carbonates minerals, were transformed by using Isometric Log-Ratio balances, whilst the variability affecting the data pattern was investigated in simple binary diagrams. The stoichiometric substitution processes governing the presence of Ca, Fe and Mg in carbonates were modeled by using regression techniques in the new space defined by ilrs coordinates. Results have evidenced the different role of Fe and Mg in substituting or not Ca in both carbonate minerals of these CO2-bearing reservoir rocks

    BARRIER EFFECT IN CO2 CAPTURE AND STORAGE FEASIBILITY STUDY

    Get PDF
    CO2 Capture & Storage (CCS) in saline aquifer is one of the most promising technologies for reducing anthropogenic emission of CO2. Feasibility studies for CO2 geo-sequestration in Italy have increased in the last few years. Before planning a CCS plant an appropriate precision and accuracy in the prediction of the reservoir evolution during injection, in terms of both geochemical calculation and fluid flow properties, is demanded. In this work a geochemical model will be presented for an offshore well in the Tyrrhenian Sea where the injection of 1.5 million ton/year of CO2 is planned. The dimension of the trapping structure requires to study an area of about 100 km2 and 4 km deep. Consequently, three different simulations were performed by means of TOUGHREACT code with Equation Of State module ECO2N. The first simulation is a stratigraphic column with a size of 110*110*4,000 meters and a metric resolution in the injection/cap-rock area (total of 8,470 elements), performed in order to asses the geochemical evolution of the cap-rock and to ensure the sealing of the system. The second simulation is at large scale in order to assess the CO2 path from the injection towards the spill point (total of about 154,000 elements). During this simulation, the effect of the full coupling of chemistry with fluid flow and a relevant effect in the expected CO2 diffusion velocity was recognized. Owing to the effect of chemical reaction and coupling terms (porosity/permeability variation with mineral dissolution/precipitation), the diffusion velocity results to be 20% slower than in a pure fluid flow simulation. In order to give a better picture of this 'barrier' effect, where the diffusion of the CO2-rich acidic water into the carbonate reservoir originates a complex precipitation/dissolution area, a small volume simulation with a 0.1 m grid was elapsed. This effect may potentially i) have a big impact on CO2 sequestration due to the reduction of available storage volume reached by the CO2 plume in 20 years and/or the enhanced injection pressure and ii) outline the relevance of a full geochemical simulation in an accurate prediction of the reservoir properties

    Hydrogeochemical processes controlling water and dissolved gas chemistry at the Accesa sinkhole (southern Tuscany, central Italy).

    Get PDF
    The 38.5 m deep Lake Accesa is a sinkhole located in southern Tuscany (Italy) that shows a peculiar water composition, being characterized by relatively high total dissolved solids (TDS) values (2 g L-1) and a Ca(Mg)-SO4 geochemical facies. The presence of significant amounts of extra-atmospheric gases (CO2 and CH4), which increase their concentrations with depth, is also recognized. These chemical features, mimicking those commonly shown by volcanic lakes fed by hydrothermal-magmatic reservoirs, are consistent with those of mineral springs emerging in the study area whose chemistry is produced by the interaction of meteoric-derived waters with Mesozoic carbonates and Triassic evaporites. Although the lake has a pronounced thermocline, water chemistry does not show significant changes along the vertical profile. Lake water balance calculations demonstrate that Lake Accesa has &gt;90% of its water supply from sublacustrine springs whose subterranean pathways are controlled by the local structural assessment that likely determined the sinking event, the resulting funnel-shape being then filled by the Accesa waters. Such a huge water inflow from the lake bottom (~9·106 m3 yr-1) feeds the lake effluent (Bruna River) and promotes the formation of water currents, which are able to prevent the establishment of a vertical density gradient. Consequently, a continuous mixing along the whole vertical water column is established. Changes of the drainage system by the deep-originated waters in the nearby former mining district have strongly affected the outflow rates of the local mineral springs; thus, future intervention associated with the ongoing remediation activities should carefully be evaluated to preserve the peculiar chemical features of Lake Accesa.</p

    Numerical and structural aberrations in advanced neuroblastoma tumours by CGH analysis; survival correlates with chromosome 17 status

    Get PDF
    Rapid tumour progression in neuroblastoma is associated with MYCN amplification, deletion of the short arm of chromosome 1 and gain of 17q. However, patients with advanced disease without MYCN amplification and/or 1p deletion have a very poor outcome too, which suggests other genetic defects may predict an unfavourable prognosis. We employed CGH to study 22 tumours of patients at stages 3 and 4 over one year of age (6 and 16 cases respectively). Patients were divided in groups (A) long-term survivors and (B) short-term survivors. CGH showed a total of 226 chromosome imbalances (110 in group A and 116 in group B). The neuroblastoma cells of long-term survivors showed a preponderance of numerical aberrations (54%vs 43%); particularly gains of entire chromosomes 1 (P< 0.03), 7 (P< 0.04) and 19 (P< 0.05). An extra copy of 17 was detected in 6/8 (75%) samples of group A and only 1/14 (7%) samples of group B (P< 0.002). Conversely, tumours of patients who died from disease progression displayed a higher frequency of structural abnormalities (43%vs 35%), including loss of 1p, 9p, 11q, 15q and 18q and gain of 12q, although the difference was not significant (P= 0.24). Unbalanced gain of 17q was detected in 8/14 (57%) tumours of group B and only 1/8 (13%) tumours of group A (P< 0.05). The peculiar genetic difference observed in the tumours of long and short-term survivors may have prognostic relevance. © 2000 Cancer Research Campaig

    Geotechnical and hydrological characterization of hillslope deposits for regional landslide prediction modeling

    Get PDF
    We attempt a characterization of the geotechnical and hydrological properties of hillslope deposits, with the final aim of providing reliable data to distributed catchment-scale numerical models for shallow landslide initiation. The analysis is based on a dataset built up by means of both field tests and laboratory experiments over 100 sites across Tuscany (Italy). The first specific goal is to determine the ranges of variation of the geotechnical and hydrological parameters that control shallow landslide-triggering mechanisms for the main soil classes. The parameters determined in the deposits are: grain size distribution, Atterberg limits, porosity, unit weight, in situ saturated hydraulic conductivity and shear strength parameters. In addition, mineral phases recognition via X-ray powder diffraction has been performed on the different soil types. The deposits mainly consist of well-sorted silty sands with low plastic behavior and extremely variable gravel and clay contents. Statistical analyses carried on these geotechnical and hydrological parameters highlighted that it is not possible to define a typical range of values only with relation to the main mapped lithologies, because soil characteristics are not simply dependent on the bedrock type from which the deposits originated. A second goal is to explore the relationship between soil type (in terms of grain size distribution) and selected morphometric parameters (slope angle, profile curvature, planar curvature and peak distance). The results show that the highest correlation between soil grain size classes and morphometric attributes is with slope curvature, both profile and planar

    Mineralogy and microporous structure of rocks from a natural CO2 reservoir

    Get PDF
    Different experimental approaches have been combined to reconstruct the mineral association and microporous structure of rocks from a natural CO2 reservoir. The fluid reservoir (Caprese Reservoir), was discovered while drilling PSS1 (Pieve Santo Stefano 1) wellbore in San Cassiano Basin (Eastern Tuscany, Central Italy, and consists of sedimentary rocks (Burano Fm.) interbedded with altered volcanic rocks, its depth being about 3,300 m with respect to the land surface. At 3,700 m depth fluid pressure and temperature are 700 bar and 120 \ub0C respectively, with a density for the supercritical CO2\u2013rich fluid of 840 Kg\ub7m-3. The study was conducted on the volcanic rocks altered by CO2 from the PSS1 wellbore drillcores and on some volcanic rocks unaffected by the presence of CO2. Lastly, rocks from the Burano Formation, unavailable from PSS1, have been sampled on outcrop. Focus is on rocks samples corresponding to the depth 3,864-3,871 m with respect to PSS1 log, which have been investigated with SEM-EDS and XRD for mineralogical characterization. Moreover, Small Angle Neutron Scattering (SANS) experiments at LLB (Saclay, France) served for microporous structure investigation of PSS1 rocks, and other volcanic rocks from Eastern Alps (IG1) and the Albani Hills (IG2 and IG3) unaffected by CO2, as well as Burano Formation rocks from outcrop
    • 

    corecore