4,217 research outputs found

    Hidden interaction in SBO galaxies

    Get PDF
    Galaxies, like plants, show a large variety of grafts: an individual of some type connects physically with a neighborhood of same or different type. The effects of these interactions between galaxies have a broad range of morphologies depending, among other quantities, on the distance of the closest approach between systems and the relative size of the two galaxies. A sketch of the possible situations is shown in tabular form. This botanical classification is just indicative, because the effects of interactions can be notable also at relatively large separations, when additional conditions are met, as for example low density of the interacting systems or the presence of intra-cluster gas. In spite of the large variety of encounters and effects, in the literature the same terms are often used to refer to different types of interactions. Analysis indicates that only few of the situations show evident signs of interaction. They appear to be most relevant when the size of the two galaxies is comparable. Bridges and tails, like the well known case of NGC 4038/39, the Antennae, are only observed for a very low percentage of all galaxies (approx. 0.38 percent, Arp and Madore 1977). In most cases of gravitational bond between two galaxies, the effects of interactions are not relevant or evident. For instance, the detection of stellar shells (Malin and Carter 1983), which have been attributed to the accretion of gas stripped from another galaxy or to the capture and disruption of a small stellar system (Quinn 1984), requires particular observing and reduction techniques. Besides these difficulties of detection, time plays an important role in erasing, within a massive galaxy, the effects of interactions with smaller objects. This can happen on a timescale shorter than the Hubble time, so the number of systems now showing signs of interaction suggests lower limits to the true frequency of interactions in the life-time of a stellar system

    Molecular gas and star formation in M81

    Full text link
    We present IRAM 30m observations of the central 1.6 kpc of the spiral M81 galaxy. The molecular gas appears weak and with an unusual excitation physics. We discuss a possible link between low CO emission and weak FUV surface brightness.Comment: 2 pages, 2 figures, to appear in "Pathways through an eclectic Universe", J. H. Knapen, T. J. Mahoney, and A. Vazdekis (Eds.), ASP Conf. Ser., 200

    Study of ISM tracers in galaxies

    Get PDF
    We collected data for two samples of normal and interacting galaxies for a total of 2953 galaxies having fluxes in one or more of the following wavebands: FIR, 21 cm line, CO(1-0) lines and soft X-ray. The large set of data obtained allowed us to revisit some of the already known relations between the different tracers of the interstellar medium (ISM), such as the link between the FIR flux and the CO line emission, the relation between X-ray emission and the blue or FIR luminosity. The relation lacking from observations for early-type galaxies has been discussed and explained in detail in the frame of a suitable theoretical model, obtained by coupling chemo-dynamical N-body simulations with a dusty spectrophotometric code of population synthesis.Comment: 2 pages, o appear in the Proceedings of the Conf. "From Stars to Galaxies: Building the Pieces to Build Up the Universe", Vallenari et al. eds., ASP Conf. Serie

    Catching Spiral - S0 transition in groups. Insights from SPH simulations with chemo-photometric implementation

    Full text link
    We are investigating the co-evolution of galaxies within groups combining multi-wavelength photometric and 2D kinematical observations. Here we focus on S0s showing star formation in ring/arm-like structures. We use smooth particle hydrodynamical simulations (SPH) with chemo-photometric implementation which provide dynamical and morphological information together with the spectral energy distribution (SED) at each evolutionary stage. As test cases, we simulate the evolution of two such S0s: NGC 1533 and NGC 3626. The merging of two halos with mass ratio 2:1, initially just composed of dark matter (DM) and gas, well match their observed SEDs, their surface brightness profiles and their overall kinematics. The residual star formation today "rejuvenating" the ring/arm like structures in these S0s is then a mere consequence of a major merger, i.e. this is a phase during the merger episode. The peculiar kinematical features, e.g. gas-stars counter rotation in NGC 3626, depends on the halos initial impact parameters. Furthermore, our simulations allow to follow, in a fully consistent way, the transition of these S0s through the green valley in the NUV-r vs. Mr colour magnitude diagram, which they cross in about 3-5 Gyr, before reaching their current position in the red sequence. We conclude that a viable mechanism driving the evolution of S0s in groups is of gravitational origin.Comment: 30 pages, 6 figures; accepted for publication in Advances in Space Research, Special Issue: Ultraviolet Astrophysic

    The evolution of the galactic morphological types in clusters

    Get PDF
    The morphological types of galaxies in nine clusters in the redshift range 0.1<z<0.25 are derived from very good seeing images taken at the NOT and the La Silla Danish telescopes. With the purpose of investigating the evolution of the fraction of different morphological types with redshift, we compare our results with the morphological content of nine distant clusters studied by the MORPHS group, five clusters observed with HST-WFPC2 at redshift z = 0.2-0.3, and Dressler's (1980) large sample of nearby clusters. After having checked the reliability of our morphological classification both in an absolute sense and relative to the MORPHS scheme, we analyze the relative occurrence of elliptical, S0 and spiral galaxies as a function of the cluster properties and redshift. We find a large intrinsic scatter in the S0/E ratio, mostly related to the cluster morphology. In particular, in our cluster sample, clusters with a high concentration of ellipticals display a low S0/E ratio and, vice-versa, low concentration clusters have a high S0/E. At the same time, the trend of the morphological fractions and ratios with redshift clearly points to a morphological evolution: as the redshift decreases, the S0 population tends to grow at the expense of the spiral population, whereas the frequency of Es remains almost constant. We also analyze the morphology-density (MD) relation in our clusters and find that -similarly to higher redshift clusters- a good MD relation exists in the high-concentration clusters, while it is absent in the less concentrated clusters. Finally, the comparison of the MD relation in our clusters with that of the D97 sample suggests that the transformation of spirals into S0 galaxies becomes more efficient with decreasing local density.Comment: 24 pages including 11 figures and 4 tables, accepted for publication in Ap

    Are truncated stellar disks linked to the molecular gas density?

    Get PDF
    We know that the slope of the radial, stellar light distribution in galaxies is well described by an exponential decline and this distribution is often truncated at a break radius (RbrR_{br}). We don't have a clear understanding for the origin of these outer truncations and several hypotheses have been proposed to explain them. We want to test the various theories with direct observations of the cold molecular gas for a few truncated galaxies in comparison with the non-truncated ones. The answer to the existence of a possible link between truncated stellar disks and the molecular gas density cannot be obtained from CO maps in the literature, because so far there are no galaxies with a clear truncation observed in CO at high resolution.Comment: 3 pages, 6 figures, to appear in Astrophysics and Space Science (Apss), special issue of "Science with ALMA: a new era for Astrophysics" conference, ed. Dr. Bachille

    Rotation curves and metallicity gradients from HII regions in spiral galaxies

    Full text link
    In this paper we study long slit spectra in the region of Hα\alpha emission line of a sample of 111 spiral galaxies with recognizable and well defined spiral morphology and with a well determined environmental status, ranging from isolation to non-disruptive interaction with satellites or companions. The form and properties of the rotation curves are considered as a function of the isolation degree, morphological type and luminosity. The line ratios are used to estimate the metallicity of all the detected HII regions, thus producing a composite metallicity profile for different types of spirals. We have found that isolated galaxies tend to be of later types and lower luminosity than the interacting galaxies. The outer parts of the rotation curves of isolated galaxies tend to be flatter than in interacting galaxies, but they show similar relations between global parameters. The scatter of the Tully-Fisher relation defined by isolated galaxies is significantly lower than that of interacting galaxies. The [NII]/Hα\alpha ratios, used as metallicity indicator, show a clear trend between Z and morphological type, t, with earlier spirals showing larger ratios; this trend is tighter when instead of t the gradient of the inner rotation curve, G, is used; no trend is found with the interaction status. The Z-gradient of the disks depends on the type, being almost flat for early spirals, and increasing for later types. The [NII]/Hα\alpha ratios measured for disk HII regions of interacting galaxies are higher than for normal/isolated objects, even if all the galaxy families present similar distributions of Hα\alpha Equivalent Width.Comment: accepted for publication in A&A (tables for HII region parameters incomplete, contact [email protected] for the whole set of tables

    Diffuse Gas and LMXBs in the Chandra Observation of the S0 Galaxy NGC 1553

    Full text link
    We have spatially and spectrally resolved the sources of X-ray emission from the X-ray faint S0 galaxy NGC 1553 using an observation from the Chandra X-ray Observatory. The majority (70%) of the emission in the 0.3 - 10.0 keV band is diffuse, and the remaining 30% is resolved into 49 discrete sources. Most of the discrete sources associated with the galaxy appear to be low mass X-ray binaries (LMXBs). The luminosity function of the LMXB sources is well-fit by a broken power-law with a break luminosity comparable to the Eddington luminosity for a 1.4 solar mass neutron star. It is likely that those sources with luminosities above the break are accreting black holes and those below are mostly neutron stars in binary systems. Spectra were extracted for the total emission, diffuse emission, and sum of the resolved sources; the spectral fits for all require a model including both a soft and hard component. The diffuse emission is predominately soft while the emission from the sources is mostly hard. Approximately 24% of the diffuse emission arises from unresolved LMXBs, with the remainder resulting from thermal emission from hot gas. There is a very bright source at the projected position of the nucleus of the galaxy. The spectrum and luminosity derived from this central source are consistent with it being an AGN; the galaxy also is a weak radio source. Finally, the diffuse emission exhibits significant substructure with an intriguing spiral feature passing through the center of the galaxy. The X-ray spectrum and surface brightness of the spiral feature are consistent with adiabatic or shock compression of ambient gas, but not with cooling. This feature may be due to compression of the hot interstellar gas by radio lobes or jets associated with the AGN.Comment: 23 pages using emulateapj.sty; ApJ, in press; revised version includes correction to error in the L_X,src/L_B ratio as well as other revision
    • …
    corecore