114 research outputs found

    Preclinical and clinical evidence on the approach-avoidance conflict evaluation as an integrative tool for psychopathology

    Get PDF
    The approach-avoidance conflict (AAC), i.e. the competing tendencies to undertake goal-directed actions or to withdraw from everyday life challenges, stands at the basis of humans' existence defining behavioural and personality domains. Gray's Reinforcement Sensitivity Theory posits that a stable bias toward approach or avoidance represents a psychopathological trait associated with excessive sensitivity to reward or punishment. Optogenetic studies in rodents and imaging studies in humans associated with cross-species AAC paradigms granted new emphasis to the hippocampus as a hub of behavioural inhibition. For instance, recent functional neuroimaging studies show that functional brain activity in the human hippocampus correlates with threat perception and seems to underlie passive avoidance. Therefore, our commentary aims to (i) discuss the inhibitory role of the hippocampus in approach-related behaviours and (ii) promote the integration of functional neuroimaging with cross-species AAC paradigms as a means of diagnostic, therapeutic, follow up and prognosis refinement in psychiatric populations

    Epigenetic Etiology of Intellectual Disability.

    Get PDF
    Intellectual disability (ID) is a prevailing neurodevelopmental condition associated with impaired cognitive and adaptive behaviors. Many chromatin-modifying enzymes and other epigenetic regulators have been genetically associated with ID disorders (IDDs). Here we review how alterations in the function of histone modifiers, chromatin remodelers, and methyl-DNA binding proteins contribute to neurodevelopmental defects and altered brain plasticity. We also discuss how progress in human genetics has led to the generation of mouse models that unveil the molecular etiology of ID, and outline the direction in which this field is moving to identify therapeutic strategies for IDDs. Importantly, because the chromatin regulators linked to IDDs often target common downstream genes and cellular processes, the impact of research in individual syndromes goes well beyond each syndrome and can also contribute to the understanding and therapy of other IDDs. Furthermore, the investigation of these disorders helps us to understand the role of chromatin regulators in brain development, plasticity, and gene expression, thereby answering fundamental questions in neurobiology

    Incidence, risk factors and impact on clinical outcomes of bloodstream infections in patients hospitalised with covid-19: A prospective cohort study

    Get PDF
    With the aim of describing the burden and epidemiology of community-acquired/healthcare-associated and hospital-acquired bloodstream infections (CA/HCA-BSIs and HA-BSIs) in patients hospitalised with COVID-19, and evaluating the risk factors for BSIs and their relative impact on mortality, an observational cohort study was performed on patients hospitalised with COVID-19 at San Paolo Hospital in Milan, Italy from 24 February to 30 November 2020. Among 1351 consecutive patients hospitalised with COVID-19, 18 (1.3%) had CA/HCA-BSI and 51 (3.8%) HA-BSI for a total of 82 episodes of BSI. The overall incidence of HA-BSI was 3.3/1000 patient-days (95% CI 2.4–4.2). Patients with HA-BSI had a longer hospital stay compared to CA/HCA-BSI and no-BSI groups (27 (IQR 21–35) vs. 12 (7–29) vs. 9 (5–17) median-days, p < 0.001) but a similar in-hospital mortality (31% vs. 33% vs. 25%, p = 0.421). BSI was not associated with an increased risk of mortality (CA/HCA-BSI vs. non-BSI aOR 1.27 95%CI 0.41–3.90, p = 0.681; HA-BSI vs. non-BSI aOR 1.29 95%CI 0.65–2.54, p = 0.463). Upon multivariate analysis, NIMV/CPAP (aOR 2.09, 95% CI 1.06– 4.12, p = 0.034), IMV (aOR 5.13, 95% CI 2.08–12.65, p < 0.001) and corticosteroid treatment (aOR 2.11, 95% CI 1.06–4.19, p = 0.032) were confirmed as independent factors associated with HA-BSI. Development of HA-BSI did not significantly affect mortality. Patients treated with corticosteroid therapy had double the risk of developing BSI

    Differential properties of transcriptional complexes formed by the CoREST family

    Get PDF
    Mammalian genomes harbor three CoREST genes. rcor1 encodes CoREST (CoREST1) and the paralogues rcor2 and rcor3 encode CoREST2 and CoREST3, respectively. Here, we describe specific properties of transcriptional complexes formed by CoREST proteins with the histone demethylase LSD1/KDM1A and histone deacetylases HDAC1/2 and the finding that all three CoRESTs express in the adult rat brain. CoRESTs interact equally strong with LSD1/KDM1A. Structural analysis shows that the overall conformation of CoREST3 is similar to that of CoREST1 complexed with LSD1/KDM1A. Nonetheless, transcriptional repressive capacity of CoREST3 is lower than that of CoREST1, which correlates with the observation that CoREST3 leads to a reduced LSD1/KDM1A catalytic efficiency. Also, CoREST2 shows a lower transcriptional repression than CoREST1, which is resistant to HDAC inhibitors. CoREST2 displays lower interaction with HDAC1/2 which is barely present in LSD1/KDM1A-CoREST2 complexes. A non-conserved Leucine in the first SANT domain of CoREST2 severely weakens its association to HDAC1/2. Furthermore, CoREST2 mutants with either increased or lacking HDAC1/2 interaction feature equivalent transcriptional repression capacities, indicating that CoREST2 represses in a HDAC-independent manner. In conclusion, differences among CoREST proteins are instrumental to the modulation of protein-protein interactions and catalytic activities of LSD1/KDM1A-CoREST-HDAC complexes, fine tuning gene expression regulation

    Polymorphism of the Fractalkine Receptor CX3CR1 and Systemic Sclerosis-associated Pulmonary Arterial Hypertension

    Get PDF
    Fractalkine (FKN) and its receptor CX3CR1 are critical mediators in the vascular and tissue damage of several chronic diseases, including systemic sclerosis (SSc) and pulmonary arterial hypertension (PAH). Interestingly, the V249I and T280M genetic polymorphisms influence CX3CR1 expression and function. We investigated whether these polymorphisms are associated with PAH secondary to SSc. CX3CR1 genotypes were analyzed by PCR and sequencing in 76 patients with limited SSc and 204 healthy controls. PAH was defined by colorDoppler echocardiography. Homozygosity for 249II as well as the combined presence of 249II and 280MM were significantly more frequent in patients with SSc compared to controls (17 vs 6%, p = 0.0034 and 5 vs 1%, p = 0.0027, respectively). The 249I and 280M alleles were associated with PAH (odd ratio [OR] 2.2, 95% confidence interval [CI] 1.01-4.75, p = 0.028 and OR 7.37, 95%CI: 2.45-24.60, p = 0.0001, respectively). In conclusion, the increased frequencies of 249I and 280M CX3CR1 alleles in a subgroup of patients with SSc-associated PAH suggest a role for the fractalkine system in the pathogenesis of this condition. Further, the 249I allele might be associated with susceptibility to SSc

    Remodeling of the chromatin structure of the facioscapulohumeral muscular dystrophy (FSHD) locus and upregulation of FSHD-related gene 1 (FRG1) expression during human myogenic differentiation

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Facioscapulohumeral muscular dystrophy (FSHD) is an autosomal dominant neuromuscular disorder associated with the partial deletion of integral numbers of 3.3 kb D4Z4 DNA repeats within the subtelomere of chromosome 4q. A number of candidate FSHD genes, adenine nucleotide translocator 1 gene (<it>ANT1</it>), FSHD-related gene 1 (<it>FRG1</it>), <it>FRG2 </it>and <it>DUX4c</it>, upstream of the D4Z4 array (FSHD locus), and double homeobox chromosome 4 (<it>DUX4</it>) within the repeat itself, are upregulated in some patients, thus suggesting an underlying perturbation of the chromatin structure. Furthermore, a mouse model overexpressing <it>FRG1 </it>has been generated, displaying skeletal muscle defects.</p> <p>Results</p> <p>In the context of myogenic differentiation, we compared the chromatin structure and tridimensional interaction of the D4Z4 array and <it>FRG1 </it>gene promoter, and <it>FRG1 </it>expression, in control and FSHD cells. The <it>FRG1 </it>gene was prematurely expressed during FSHD myoblast differentiation, thus suggesting that the number of D4Z4 repeats in the array may affect the correct timing of <it>FRG1 </it>expression. Using chromosome conformation capture (3C) technology, we revealed that the <it>FRG1 </it>promoter and D4Z4 array physically interacted. Furthermore, this chromatin structure underwent dynamic changes during myogenic differentiation that led to the loosening of the <it>FRG1</it>/4q-D4Z4 array loop in myotubes. The <it>FRG1 </it>promoter in both normal and FSHD myoblasts was characterized by H3K27 trimethylation and Polycomb repressor complex binding, but these repression signs were replaced by H3K4 trimethylation during differentiation. The D4Z4 sequences behaved similarly, with H3K27 trimethylation and Polycomb binding being lost upon myogenic differentiation.</p> <p>Conclusion</p> <p>We propose a model in which the D4Z4 array may play a critical chromatin function as an orchestrator of <it>in cis </it>chromatin loops, thus suggesting that this repeat may play a role in coordinating gene expression.</p

    Calpain Cleavage of Brain Glutamic Acid Decarboxylase 65 Is Pathological and Impairs GABA Neurotransmission

    Get PDF
    Previously, we have shown that the GABA synthesizing enzyme, L-glutamic acid decarboxylase 65 (GAD65) is cleaved to form its truncated form (tGAD65) which is 2–3 times more active than the full length form (fGAD65). The enzyme responsible for cleavage was later identified as calpain. Calpain is known to cleave its substrates either under a transient physiological stimulus or upon a sustained pathological insult. However, the precise role of calpain cleavage of fGAD65 is poorly understood. In this communication, we examined the cleavage of fGAD65 under diverse pathological conditions including rats under ischemia/reperfusion insult as well as rat brain synaptosomes and primary neuronal cultures subjected to excessive stimulation with high concentration of KCl. We have shown that the formation of tGAD65 progressively increases with increasing stimulus concentration both in rat brain synaptosomes and primary rat embryo cultures. More importantly, direct cleavage of synaptic vesicle - associated fGAD65 by calpain was demonstrated and the resulting tGAD65 bearing the active site of the enzyme was detached from the synaptic vesicles. Vesicular GABA transport of the newly synthesized GABA was found to be reduced in calpain treated SVs. Furthermore, we also observed that the levels of tGAD65 in the focal cerebral ischemic rat brain tissue increased corresponding to the elevation of local glutamate as indicated by microdialysis. Moreover, the levels of tGAD65 was also proportional to the degree of cell death when the primary neuronal cultures were exposed to high KCl. Based on these observations, we conclude that calpain-mediated cleavage of fGAD65 is pathological, presumably due to decrease in the activity of synaptic vesicle - associated fGAD65 resulting in a decrease in the GABA synthesis - packaging coupling process leading to reduced GABA neurotransmission

    Targeting Huntington’s disease through histone deacetylases

    Get PDF
    Huntington’s disease (HD) is a debilitating neurodegenerative condition with significant burdens on both patient and healthcare costs. Despite extensive research, treatment options for patients with this condition remain limited. Aberrant post-translational modification (PTM) of proteins is emerging as an important element in the pathogenesis of HD. These PTMs include acetylation, phosphorylation, methylation, sumoylation and ubiquitination. Several families of proteins are involved with the regulation of these PTMs. In this review, I discuss the current evidence linking aberrant PTMs and/or aberrant regulation of the cellular machinery regulating these PTMs to HD pathogenesis. Finally, I discuss the evidence suggesting that pharmacologically targeting one of these protein families the histone deacetylases may be of potential therapeutic benefit in the treatment of HD
    corecore