41 research outputs found

    Unperturbed Schelling Segregation in Two or Three Dimensions

    Get PDF
    Schelling’s models of segregation, first described in 1969 (Am Econ Rev 59:488–493, 1969) are among the best known models of self-organising behaviour. Their original purpose was to identify mechanisms of urban racial segregation. But his models form part of a family which arises in statistical mechanics, neural networks, social science, and beyond, where populations of agents interact on networks. Despite extensive study, unperturbed Schelling models have largely resisted rigorous analysis, prior results generally focusing on variants in which noise is introduced into the dynamics, the resulting system being amenable to standard techniques from statistical mechanics or stochastic evolutionary game theory (Young in Individual strategy and social structure: an evolutionary theory of institutions, Princeton University Press, Princeton, 1998). A series of recent papers (Brandt et al. in: Proceedings of the 44th annual ACM symposium on theory of computing (STOC 2012), 2012); Barmpalias et al. in: 55th annual IEEE symposium on foundations of computer science, Philadelphia, 2014, J Stat Phys 158:806–852, 2015), has seen the first rigorous analyses of 1-dimensional unperturbed Schelling models, in an asymptotic framework largely unknown in statistical mechanics. Here we provide the first such analysis of 2- and 3-dimensional unperturbed models, establishing most of the phase diagram, and answering a challenge from Brandt et al. in: Proceedings of the 44th annual ACM symposium on theory of computing (STOC 2012), 2012)

    Minority population in the one-dimensional Schelling model of segregation

    Get PDF
    Schelling models of segregation attempt to explain how a population of agents or particles of two types may organise itself into large homogeneous clusters. They can be seen as variants of the Ising model. While such models have been extensively studied, unperturbed (or noiseless) versions have largely resisted rigorous analysis, with most results in the literature pertaining models in which noise is introduced, so as to make them amenable to standard techniques from statistical mechanics or stochastic evolutionary game theory. We rigorously analyse the one-dimensional version of the model in which one of the two types is in the minority, and establish various forms of threshold behaviour. Our results are in sharp contrast with the case when the distribution of the two types is uniform (i.e. each agent has equal chance of being of each type in the initial configuration), which was studied in Brandt et al. (in: STOC ’12: proceedings of the 44th symposium on theory of computing, pp. 789–804, 2012) and Barmpalias et al. (in: 55th Annual IEEE symposium on foundations of computer science, Oct 18–21, Philadelphia, FOCS’14, 2014)

    Digital Morphogenesis via Schelling Segregation

    Get PDF
    Schelling's model of segregation looks to explain the way in which particles or agents of two types may come to arrange themselves spatially into configurations consisting of large homogeneous clusters, i.e. connected regions consisting of only one type. As one of the earliest agent based models studied by economists and perhaps the most famous model of self-organising behaviour, it also has direct links to areas at the interface between computer science and statistical mechanics, such as the Ising model and the study of contagion and cascading phenomena in networks. While the model has been extensively studied it has largely resisted rigorous analysis, prior results from the literature generally pertaining to variants of the model which are tweaked so as to be amenable to standard techniques from statistical mechanics or stochastic evolutionary game theory. In BK, Brandt, Immorlica, Kamath and Kleinberg provided the first rigorous analysis of the unperturbed model, for a specific set of input parameters. Here we provide a rigorous analysis of the model's behaviour much more generally and establish some surprising forms of threshold behaviour, notably the existence of situations where an increased level of intolerance for neighbouring agents of opposite type leads almost certainly to decreased segregation

    Algorithmic Randomness and Capacity of Closed Sets

    Full text link
    We investigate the connection between measure, capacity and algorithmic randomness for the space of closed sets. For any computable measure m, a computable capacity T may be defined by letting T(Q) be the measure of the family of closed sets K which have nonempty intersection with Q. We prove an effective version of Choquet's capacity theorem by showing that every computable capacity may be obtained from a computable measure in this way. We establish conditions on the measure m that characterize when the capacity of an m-random closed set equals zero. This includes new results in classical probability theory as well as results for algorithmic randomness. For certain computable measures, we construct effectively closed sets with positive capacity and with Lebesgue measure zero. We show that for computable measures, a real q is upper semi-computable if and only if there is an effectively closed set with capacity q

    A note on the differences of computably enumerable reals

    Get PDF
    We show that given any non-computable left-c.e. real α there exists a left-c.e. real β such that α≠β+γ for all left-c.e. reals and all right-c.e. reals γ. The proof is non-uniform, the dichotomy being whether the given real α is Martin-Loef random or not. It follows that given any universal machine U, there is another universal machine V such that the halting probability of U is not a translation of the halting probability of V by a left-c.e. real. We do not know if there is a uniform proof of this fact

    Digital morphogenesis via Schelling segregation

    Get PDF
    Schelling's model of segregation looks to explain the way in which particles or agents of two types may come to arrange themselves spatially into configurations consisting of large homogeneous clusters, i.e. connected regions consisting of only one type. As one of the earliest agent based models studied by economists and perhaps the most famous model of self-organising behaviour, it also has direct links to areas at the interface between computer science and statistical mechanics, such as the Ising model and the study of contagion and cascading phenomena in networks. While the model has been extensively studied it has largely resisted rigorous analysis, prior results from the literature generally pertaining to variants of the model which are tweaked so as to be amenable to standard techniques from statistical mechanics or stochastic evolutionary game theory. In Brandt et al (2012 Proc. 44th Annual ACM Symp. on Theory of Computing) provided the first rigorous analysis of the unperturbed model, for a specific set of input parameters. Here we provide a rigorous analysis of the model's behaviour much more generally and establish some surprising forms of threshold behaviour, notably the existence of situations where an increased level of intolerance for neighbouring agents of opposite type leads almost certainly to decreased segregation

    Depth, Highness and DNR Degrees

    Get PDF
    A sequence is Bennett deep [5] if every recursive approximation of the Kolmogorov complexity of its initial segments from above satisfies that the difference between the approximation and the actual value of the Kolmogorov complexity of the initial segments dominates every constant function. We study for different lower bounds r of this difference between approximation and actual value of the initial segment complexity, which properties the corresponding r(n)-deep sets have. We prove that for r(n) = εn, depth coincides with highness on the Turing degrees. For smaller choices of r, i.e., r is any recursive order function, we show that depth implies either highness or diagonally-non-recursiveness (DNR). In particular, for left-r.e. sets, order depth already implies highness. As a corollary, we obtain that weakly-useful sets are either high or DNR. We prove that not all deep sets are high by constructing a low order-deep set. Bennett's depth is defined using prefix-free Kolmogorov complexity. We show that if one replaces prefix-free by plain Kolmogorov complexity in Bennett's depth definition, one obtains a notion which no longer satisfies the slow growth law (which stipulates that no shallow set truth-table computes a deep set); however, under this notion, random sets are not deep (at the unbounded recursive order magnitude). We improve Bennett's result that recursive sets are shallow by proving all K-trivial sets are shallow; our result is close to optimal. For Bennett's depth, the magnitude of compression improvement has to be achieved almost everywhere on the set. Bennett observed that relaxing to infinitely often is meaningless because every recursive set is infinitely often deep. We propose an alternative infinitely often depth notion that doesn't suffer this limitation (called i.o. depth).We show that every hyperimmune degree contains a i.o. deep set of magnitude εn, and construct a π01- class where every member is an i.o. deep set of magnitude εn. We prove that every non-recursive, non-DNR hyperimmune-free set is i.o. deep of constant magnitude, and that every nonrecursive many-one degree contains such a set

    Tipping Points in 1-dimensional Schelling Models with Switching Agents

    Get PDF
    Schelling’s spacial proximity model was an early agent-based model, illustrating how ethnic segregation can emerge, unwanted, from the actions of citizens acting according to individual local preferences. Here a 1-dimensional unperturbed variant is studied under switching agent dynamics, interpretable as being open in that agents may enter and exit the model. Following the authors’ work (Barmpalias et al., FOCS, 2014) and that of Brandt et al. (Proceedings of the 44th ACM Symposium on Theory of Computing (STOC 2012), 2012), rigorous asymptotic results are established. The dynamic allows either type to take over almost everywhere. Tipping points are identified between the regions of takeover and staticity. In a generalization of the models considered in [1] and [3], the model’s parameters comprise the initial proportions of the two types, along with independent values of the tolerance for each type. This model comprises a 1-dimensional spin-1 model with spin dependent external field, as well as providing an example of cascading behaviour within a network

    Compactness arguments with effectively closed sets for the study of relative randomness

    No full text
    corecore