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A note on the differences of computably enumerable reals ∗

George Barmpalias Andrew Lewis-Pye

June 28, 2016

Abstract. We show that given any non-computable left-c.e. real α there exists a left-c.e. real β such that
α , β + γ for all left-c.e. reals and all right-c.e. reals γ. The proof is non-uniform, the dichotomy being
whether the given real α is Martin-Löf random or not. It follows that given any universal machine U, there
is another universal machine V such that the halting probability ΩU of U is not a translation of the halting
probability ΩV of V by a left-c.e. real. We do not know if there is a uniform proof of this fact.
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1 Introduction

The reals which have a computably enumerable left or right Dedekind cut, also known as c.e. reals, play
a ubiquitous role in computable analysis and algorithmic randomness. The differences of c.e. reals, also
known as d.c.e. reals, form a field under the usual addition and multiplication, as was demonstrated by
Ambos-Spies, Weihrauch, and Zheng [ASWZ00]. Raichev [Rai05] and Ng [Ng06] showed that this field
is real-closed. Downey, Wu and Zheng [DWZ04] studied the Turing degrees of d.c.e. reals. Clearly d.c.e.
reals are ∆0

2 since they can be computably approximated. Downey, Wu and Zheng [DWZ04] showed that
every real which is truth-table reducible to the halting problem is Turing equivalent to a d.c.e. real. However
they also showed that there are ∆0

2 degrees which do not contain any d.c.e. reals. In this strong sense, d.c.e.
reals form a strict subclass of the ∆0

2 reals.

Despite this considerable body of work on d.c.e. reals, the following rather basic question does not have an
answer in the current literature. Given a non-computable c.e. real α, is there a c.e. real β such that α − β is
not a c.e. real? The answer is, perhaps unsurprisingly, positive. We say that a real is left-c.e. or right-c.e. if
its left or right Dedekind cut respectively is computably enumerable.

Theorem 1.1. If α is a non-computable left-c.e. real there exists a left-c.e. real β such that α , β+ γ for all
left-c.e. and all right-c.e. reals γ.

An interesting aspect of Theorem 1.1 is that its proof depends crucially on the well-developed theory of
Martin-Löf random left-c.e. reals, and in particular the methodology developed by Downey, Hirschfeldt
and Nies in [DHN02]. The proof is nonuniform and one has to consider separately the case where α is
Martin-Löf random and the case where it is not. We do not know if there is a uniform proof of Theorem
1.1, in the sense that from a left-c.e. approximation to a non-computable real α we can compute a left-c.e.
approximation to a real β such that α , β + γ for all left-c.e. and all right-c.e. reals γ.

Let us focus on the connection with the theory of Martin-Löf random left-c.e. reals, as it is crucial in both
of the two cases. It follows from the work of Downey, Hirschfeldt and Nies [DHN02] that:

if α, β are left-c.e. reals and α is Martin-Löf random while β is not, then α − β is a
Martin-Löf random left-c.e. real.

(1.0.1)

This, in particular, means that in Theorem 1.1, α is Martin-Löf random if and only if β is Martin-Löf
random. Moreover we can use this fact in order to reduce Theorem 1.1 to the following special case, which
we prove in Section 3.

Lemma 1.2. If α is a left-c.e. real which is neither computable nor Martin-Löf random, then there exists a
left-c.e. real β (also not Martin-Löf random) such that α − β is neither a left-c.e. real nor a right-c.e. real.

Let us now see how Theorem 1.1 can be derived from this special case. First, assume that the given α is
Martin-Löf random. Lemma 1.2 implies the existence of two left-c.e. reals δ0, δ1 which are not Martin-Löf
random and such that δ := δ0 − δ1 is neither a left-c.e. nor a right-c.e. real. Indeed, we can start with
any non-computable left-c.e. real δ0 which is not Martin-Löf random (such as the halting problem) and
apply Lemma 1.2 in order to get δ1 with the required properties. Note that δ1 is necessarily not Martin-Löf
random, because otherwise, given that δ0 is not Martin-Löf random, it would follow from (1.0.1) that δ0−δ1
would be a right-c.e. real. To establish Theorem 1.1 for this case, we choose β = α+ δ. First note that α− β
is not a left-c.e. real or a right-c.e. real, by the choice of δ. Second, β = (α−δ1)+δ0 and α−δ1 is Martin-Löf
random by (1.0.1), since α is Martin-Löf random. Then β is a Martin-Löf random left-c.e. real as the sum of
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a Martin-Löf random left-c.e. real and another left-c.e. real (a result that was originally proved by Demuth
[Dem75]). The case of Theorem 1.1 when α is not Martin-Löf random is exactly Lemma 1.2. We note that,
as will become apparent in Section 3, the proof of this case also makes essential use of (1.0.1).

A subclass of the left-c.e. reals are the characteristic functions of c.e. sets (viewed as binary expansions).
These reals were called strongly left-c.e. reals by Downey, Hirschfeldt and Nies [DHN02] and are highly
non-random reals. It will be clear from the discussion of Section 2 that in Theorem 1.1 we cannot (in
general) choose the real β to be strongly left-c.e. as in that case, if the given α is Martin-Löf random, then
α − β is a left-c.e. real. However the following can be proved using standard finite injury methods.

Proposition 1.3 (Properly d.c.e. reals). There exist strongly left-c.e. reals α, β such that α − β is not a
left-c.e. real and is not a right-c.e. real.

We conclude this discussion with a corollary of Theorem 1.1 in terms of halting probabilities. The cu-
mulative work of Solovay [Sol75], Calude, Hertling, Khoussainov and Wang [CHKW01] and Kučera and
Slaman [KS01] has shown that the Martin-Löf random left-c.e. reals are exactly the halting probabilities of
universal machines. This class remains the same whether we consider prefix-free machines or plain Turing
machines. Here we consider Turing machines operating on strings, and given an effective list of all Turing
machines (Me), a Turing machine U is called universal if there exists a computable function e 7→ σe from
numbers to strings such that U(σe ∗ τ) = Me(τ) for all e and all strings τ. A similar definition applies to
universal prefix-free machines, restricted to Turing machines with prefix-free domain.

Halting probabilities, or equivalently Martin-Löf random left-c.e. reals, are all similar in the sense that they
all have the same degree with respect to a wide variety of degree structures (see Downey and Hirschfeldt
[DH10, Chapter 9]). A number of results have been established, however, which show that halting probabil-
ities may differ in certain ways, depending on the universal machine used. For example, Figueira, Stephan,
and Wu [FSW06] showed that for each universal machine U there exists universal machine V such that ΩU

and ΩV have incomparable truth-table degrees. Their proof consists of considering ΩV = ΩU + X for a cre-
ative set X like the halting problem, and then using the fact from [Ben88, CN97] that no Martin-Löf random
real truth-table computes a creative set. Recall that the use of an oracle computation of a set A from a set
B is an upper bound (as a function of n) on the largest position in the oracle B queried in the computation
of the first n bits of A. Frank Stephan (see [BDG10, Section 6]) showed that for each universal machine
U there exists universal machine V such that ΩU cannot compute ΩV with use n + c for any constant c.
Recently Barmpalias and Lewis-Pye have improved the use-bound in this statement to n + log n, while they
also showed that ΩU , ΩV can be computed from each other with use n + 2 log n, for any universal machines
U,V . Along these lines, we can formulate Theorem 1.1 as follows.

Corollary 1.4. For each universal by adjunction machine U0 there exists another universal by adjunction
machine U1 such that for all left-c.e. and all right-c.e. reals β we have ΩU0 , ΩU1 + β.

This shows that halting probabilities are not always translations of the halting probability of a fixed universal
machine by a left-c.e. or a right-c.e. real.

2 Overview of Martin-Löf random left-c.e. reals

Some familiarity with the basic concepts of algorithmic information theory and the basic methods of com-
putability theory would be helpful for the reader. For such background we refer to one of the monographs
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[LV97, DH10, Nie09], where the latter two are more focused on computability theory aspects of algorithmic
randomness. The theory of left-c.e. reals has grown into a significant part of modern algorithmic random-
ness, and is best presented in [DH10, Chapters 5 and 9]. The present section is an original presentation
of some facts regarding Martin-Löf random reals that stem from [Sol75, CHKW01, KS01] and are further
elaborated on in [DHN02], which are essential for the proof of Theorem 1.1. Moreover, some of these facts
are not given explicitly in the sources above, but can be recovered from the proofs.

The systematic study of Martin-Löf random c.e. reals started with Solovay in [Sol75], who showed that
Chaitin’s halting probability of a prefix-free machine (a well known Martin-Löf random left-c.e. real) has
maximum degree in a degree structure that measures the hardness of approximating left-c.e. reals by in-
creasing sequences of rationals. This result was complemented by the work of Calude, Hertling, Khous-
sainov and Wang [CHKW01] and Kučera and Slaman [KS01], who showed that these maximally hard to
approximate left-c.e. reals are exactly the halting probabilities of universal machines, which also coincide
with the Martin-Löf random left-c.e. reals. The degree structure introduced in [Sol75] is now known as the
Solovay degrees of left-c.e. reals and was extensively studied in [DHN02]. An increasing computable se-
quence of rationals (αi) that converges to a real α is called a left-c.e. approximation to α, denoted (αs)→ α.
The Solovay reducibility β ≤S α between left-c.e. reals α, β can be defined equivalently by any of the
following clauses:

(a) there exists a rational q such that qα − β is left-c.e.

(b) there exist a rational q and (αs)→ α, (βs)→ β such that β − βs < q · (α − αs) for all s;

(c) there exist a rational q and (αs)→ α, (βs)→ β such that βs+1 − βs < q · (αs+1 − αs) for all s.

Note that the set of rationals q for which one of the above clauses holds is upward closed - if the clause holds
for the rational q then it also holds for all rationals q′ > q. Although it is not explicitly stated in [DHN02],
it follows from the proofs that when β ≤S α, the infimums of the rationals q for which the clauses (a), (b)
and (c) hold are equal.

Kučera and Slaman [KS01] proved that:

if (αs), (βs) are left-c.e. approximations to α, β respectively and if α is Martin-
Löf random, then lim inf s

[
(α − αs)/(β − βs)

]
> 0. (2.0.1)

In this sense, Martin-Löf random left-c.e. reals can only have slow left-c.e. approximations, compared
to any other left-c.e. real and any left-c.e. approximation to it. Downey, Hirschfeldt and Nies [DHN02]
showed that any left-c.e. approximation to a non-random left-c.e. real is considerably faster than every
left-c.e. approximation to any Martin-Löf random real, in the sense that:

if (αs), (βs) are left-c.e. approximations to α, β respectively, β is Martin-Löf
random and α is not Martin-Löf random, then lim inf s

[
(α − αs)/(β − βs)

]
= 0. (2.0.2)

Demuth [Dem75] showed that if α, β are left-c.e. reals and at least one of them is Martin-Löf random, then
α + β is also Martin-Löf random. Downey, Hirschfeldt and Nies [DHN02] proved that the converse also
holds, i.e.:

if α, β are left-c.e. reals and α + β is Martin-Löf random then at least one of α, β is
Martin-Löf random.

(2.0.3)

We conclude our overview with a proof of (1.0.1) which is essential for the proof of Theorem 1.1, but which
is not stated or proved in [DHN02] (although it follows easily from the arguments in that paper). We need
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the following fact which was proved in [DHN02] (but stated in a weaker form) and which is also related to
the above discussion regarding clauses (a)-(c).

Lemma 2.1 (Downey, Hirschfeldt and Nies [DHN02]). Suppose that α, β have left-c.e. approximations
(αs), (βs) such that ∀s

(
α − αs < q · (β − βs)

)
for some rational q > 0. If p > q is another rational, then

there exists a left-c.e. approximation (γs) to α such that ∀s
(
γs+1 − γs < p · (βs+1 − βs)

)
.

Now for (1.0.1), assume that α is Martin-Löf random and β is not Martin-Löf random. By (2.0.2) for each
left-c.e. approximation (αs) to α there exists a left-c.e. approximation (βs) to β such that β−βs < 2−1 ·(α−αs)
for all s. Then by Lemma 2.1 there exists a left-c.e. approximation (γs)→ β such that γs+1−γs < αs+1−αs

for all s. This means that the approximation (αs − γs) to α − β is an increasing left-c.e. approximation. So
α − β is a left-c.e. real. It remains to show that α − β is Martin-Löf random. Since β is not Martin-Löf
random, by (2.0.3) it suffices to show that (α − β) + β is Martin-Löf random. The latter follows from the
hypothesis that α is Martin-Löf random.

3 Proof of Lemma 1.2

We can use a priority injury construction. Let (γi
s), (δ

i
s) be an effective list of all increasing and decreasing

computable sequences of rationals in (0, 1) respectively. Let γi be the limit of (γi
s) and let δi be the limit

of (δi
s). Given α as in the statement of the lemma, it suffices to construct a left-c.e. real β such that the

following conditions are met:

Li : α − β , γi and Ri : α − β , δi.

Given an increasing computable sequence of rationals (αs) that coverges to α, our construction will define
an increasing sequence of rationals (βs) converging to β such that the above requirements are met. We list
the requirements in order of priority as L0,R0,L1, . . . .

Parameters of the construction. Let β0 = 0. The strategy for Li will use a dynamically defined pa-
rameter ci and the strategy for Ri will use a similar parameter di. Let ci[0] = di[0] = 0. We say that
stage s + 1 is Li-expansionary if |αs+1 − βs+1 − γ

i
s+1| < 2−ci[s]. Similarly, stage s + 1 is Ri-expansionary if

|αs+1 − βs+1 − δ
i
s+1| < 2−di[s]. The strategy for each requirement Li will define a left-c.e. real βi, which will

be its contribution toward the global left-c.e. real β. Formally, given the approximations (βi
s) defined by the

requirements Li respectively, for each s we define:

βs =
∑
i≤s

βi
s.

If s + 1 is Li-expansionary we let ci[s + 1] = ci[s] + 1, and otherwise we let ci[s + 1] = ci[s]. Similarly, if
s + 1 is Ri-expansionary we let di[s + 1] = di[s] + 1, and if not we let di[s + 1] = di[s]. This completes the
definition of the parameters ci, di throughout the stages of the construction. At each stage s + 1 the strategy
for Ri imposes an automatic restraint on the strategies forL j of lower priority, which prohibits any increase
of β by more than 2−di[s+1]. All of the strategies for the Li requirements will use a fixed Martin-Löf random
left-c.e. real η ∈ (0, 1) and an increasing computable rational approximation (ηs) to η. The strategy for each
Li has an extra parameter qi, which is updated during the stages s and which dictates the scale at which η is
going to affect the growth of (βs). At stage s + 1 we define q0[s + 1] = 1

2 , and for i > 0 we define qi[s + 1]
to be the least of all 2−i−d j[s+1]−1 for j < i.
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Construction of (βs). At each stage s + 1 and each i ≤ s, if s + 1 is Li-expansionary we define βi
s+1 =

βi
s + qi[s + 1] · (ηs+1 − ηt), where t is the largest Li-expansionary stage before s + 1 if there is such, and

where t = 0 otherwise. If s + 1 is not Li-expansionary, we define βi
s+1 = βi

s. This completes the definition
of (βs).

Verification. First we verify that (βs) reaches a finite limit β. Let βi be the limit of βi
s as s→ ∞ and note

that for each i:
βi ≤ 2−i−1 · η < 2−i−1 so β =

∑
i

βi < 1.

Recall the dynamic definition of ci[s] and di[s]. It follows that if ci[s] reaches a limit, requirementLi is met.
Similarly, if di[s] reaches a limit, requirement Ri is met. We prove both of these statements by induction.
Suppose that the claim holds for all i < n. Also let s0 be a stage such that ci[s] = ci[s0] and di[s] = di[s0]
for all i < n and all s > s0. Then by definition qn[s] = qn[s0] for all s > s0. Let qn denote the limit qn[s0] of
qn[s] from now on. If cn[s] does not reach a limit, then there are infinitely many Ln-expansionary stages,
which implies that α − β = γn. Moreover if (t j) is a monotone enumeration of the Ln-expansionary stages,
then βts+1 − βts > qn · (ηts+1 − ηts) for all s. Since η is Martin-Löf random, this means that β is also Martin-
Löf random. But by hypothesis α is not Martin-Löf random, so α − β is a Martin-Löf random right-c.e.
real. This contradicts the fact that α − β = γ since right-c.e. reals which have a left-c.e. approximation are
computable. It follows that there are only finitely many Ln-expansionary stages, which implies that cn[s]
reaches a limit. Let s1 > s0 be a stage such that cn[s] = cn[s1] for all s > s1.

It remains to show that dn[s] reaches a limit. Towards a contradiction, suppose that this is not the case,
so that there are infinitely many Rn-expansionary stages. Then it follows that α − β = δn. Let (tk) be a
computable enumeration of all Rn-expansionary stages. Then dn[tk] = k for all k. For each i > n and each
k we have βi − βi

tk ≤ 2−i−k−1 which means that for k large enough that tk > s1:

β − βtk <
∑
i>n

(βi − βi
tk ) ≤

∑
i>n

2−i−k−1 ≤ 2−k−1.

This means that β is a computable real. Since α = δn + β and δn is a right-c.e. real, it follows that α is
a right-c.e. real. Since α also a left-c.e. real, it must therefore be computable, contrary to hypothesis. So
we may conclude that there are finitely many Rn-expansionary stages, which establishes that Rn is met and
dn reaches a limit. This concludes the induction step and the proof that the constructed real β meets the
requirements Ln and Rn for all n.

Remark. The reader may wonder why a uniform argument for Theorem 1.1 might not work, i.e. why we
needed to divide into two cases according to whether the given real is Martin-Löf random or not. While it
is not easy to explain why some things do not work, the immediate answer is that in a construction such
as the argument above, if we did not assume that the given real is not Martin-Löf random or we did not
code randomness into the real we construct, we do not see a way to argue that requirements Li act only
finitely often. More generally, if a direct standard uniform construction worked, in our view we could use
it to show that given a left ce real α we can find a left ce real β such that 2α − β is not left-c.e. and α − β
not a right-c.e. real. However we know that this is not possible by one of the results in [BLP16]. This
non-uniformity seems to relate to the non-uniformities in the characterization of the halting probabilities in
[Sol75, CHKW01, KS01] that we discussed in Section 1. Showing that such non-uniformities are necessary
may be an interesting exercise.
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4 Proof of Proposition 1.3

We can use a standard priority injury construction. Let (γi
s), (δ

i
s) be an effective list of all increasing and

decreasing computable sequences of rationals in (0, 1) respectively. Moreover let γi be the limit of (γi
s) and

let δi be the limit of (δi
s). It suffices to satisfy the following conditions.

Li : α − β , γi and Ri : α − β , δi

Our construction will define increasing sequences (αs), (βs) of rationals which converge to α, β respectively.
Let α0 = β0 = 0. Strategies Li will use a parameter ci which takes values from N[2i] (i.e. the even numbers)
and strategies Ri will use a parameter di which takes values from N[2i+1]. We say that Li requires attention
at stage s+1 if either ci is undefined, or ci[s] is defined and |αs−βs−γ

i
s+1| < 2−ci[s]−3. Similarly we say that

Ri requires attention at stage s + 1 if either di is undefined, or di[s] is defined and |αs−βs− δ
i
s+1| < 2−di[s]−3.

Strategy Li will impose a restraint `i on α while strategy Ri will impose a restraint ri on β. The parameters
`i, ri will be defined (and possibly redefined) dynamically during the construction, before reaching a limit.
We list the requirements in order of priority as L0,R0,L1, . . . and construct α, β as c.e. sets A, B with
characteristic sequences the binary expansions of α, β. In this way, the restraints `i, ri will apply to the
enumerations into A and B respectively. Note that enumerating a number n into A increases α − β by 2−n

while enumerating n into B decreases α − β by 2−n. Initializing requirement Li at stage s + 1 means to
let ci[s + 1], `i[s + 1] be undefined. Similarly, initializing Ri at stage s + 1 means to let di[s + 1], ri[s + 1]
be undefined. If ci[s] is defined and Li is not initialized at stage s + 1 then we automatically assume that
ci[s] = ci[s + 1]. Similarly, if di[s] is defined and Ri is not initialized at stage s + 1 then we automatically
assume that di[s] = di[s + 1].

At stage s + 1 let i be the least number ≤ s such that Li or Ri requires attention. If there is no such number,
go to the next stage. Otherwise, first assume that Li requires attention at stage s + 1. If ci[s] is not defined,
let ci[s + 1] be the least number in N[2i] which is larger than any value of any parameter defined so far in the
construction (in particular larger than all previous values of ci and larger than any restraint r j on β which is
currently defined). If,on the other hand ci[s] is defined, then enumerate it into B, define `i[s + 1] = ci[s] + 3
and initialize all L j+1,R j for all j ≥ i. In this latter case we say that Li acts at stage s + 1.

Second, assume thatRi requires attention at stage s+1. If di[s] is not defined, let di[s+1] be the least number
in N[2i+1] which is larger than any value of any parameter defined so far in the construction (in particular
larger than all previous values of di and larger than any restraint ` j on α which is currently defined). If,on
the other hand di[s] is defined, then enumerate it into A, define ri[s + 1] = di[s] + 3 and initialize all L j,R j

for all j ≥ i. In this latter case we say that Ri acts at stage s + 1.

The construction defined computable enumerations of the sets A, B which in turn define computable non-
decreasing rational approximations (αs), (βs) to the reals α, β. Since A, B are c.e. and no c.e. set is Martin-
Löf random, we immediately get that α, β are not random. It remains to show that α, βmeet the requirements
Li and Ri. Note that if Li acts at stage s + 1 and is not initialized at any later stage, then it will not require
attention at any later stage. Indeed, in this case no higher priority requirement will act at later stages, and
both ci[t] and `i[t + 1] remain constant for all t ≥ s. Let ci, `i denote their final values respectively. Since Li

required attention at stage s + 1 we have |αs − βs − γ
i
s+1| < 2−ci−3. Moreover βs+1 − βs = 2−ci and αs = αs+1.

So αs+1 − βs+1 < γi
s+1 − 2−ci−1 and since `i = ci + 3 we have αt − αs+1 < 2−ci−2 for all t > s. Therefore

αt − βt < γ
i
t − 2−ci−2 for all t > s and Li will not require attention at any stage after s. Moreover we also get
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that α − β ≤ γi − 2−ci−2 which means that in this case condition Li is met. We have shown that:

If Li acts at stage s + 1 and is not initialized at any later stage, then it
will not require attention at any later stage and is satisfied. (4.0.1)

An entirely similar argument shows that:

If Ri acts at stage s + 1 and is not initialized at any later stage, then it
will not require attention at any later stage and is satisfied. (4.0.2)

It remains to use (4.0.1) and (4.0.2) inductively in order to show that α − β meets Li, Ri for all i. Note
that L0 cannot be initialized. So c0 will be defined and remain constant for the rest of the stages. If L0
never acts, then it does not require attention after the first time that it required (and received) attention. This
means that |αs−βs−γ

0| ≥ 2−ci−3 for all but finitely many stages s, so α−β , γi. If it does act at some stage,
then by (4.0.1) it is satisfied and never requires attention at any later stage. Now inductively assume that the
same is true for all Li,Ri, i < e. Then consider a stage s0 after which none of Li,Ri, i < e acts or requires
attention. Then the same argument shows that Le does not act or require attention after a certain stage, and
is met. The same argument applies to Re through property (4.0.2), and this concludes the induction step.
We can conclude that α − β meets Li,Ri for all i.

Remark. The referee has pointed out that a proof of Proposition 1.3 may be given without a direct con-
struction. Consider two c.e. sets A, B such that A − B has properly d.c.e. degree, i.e. there is no c.e. set
which is Turing equivalent to A − B. Such c.e. sets were originally constructed in Cooper [Coo71], and the
standard construction gives B ⊆ A. Let α, β be the reals in (0, 1) whose binary expansions are the charac-
teristic sequences of A, B respectively. Then the binary expansion of α − β is the characteristic sequence of
A − B. If α − β had a left-c.e. or a right-c.e. approximation, then A − B would be Turing equivalent to the
left or the right Dedekind cut of α− β which would be a c.e. set. This would contradict the choice of A− B.
Hence α, β have the required properties.
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