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Abstract Schelling’s models of segregation, first described in 1969 [18] are among the best known models
of self-organising behaviour. Their original purpose was to identify mechanisms of urban racial segregation.
But his models form part of a family which arises in statistical mechanics, neural networks, social science,
and beyond, where populations of agents interact on networks. Despite extensive study, unperturbed
Schelling models have largely resisted rigorous analysis, prior results generally focusing on variants in
which noise is introduced into the dynamics, the resulting system being amenable to standard techniques
from statistical mechanics or stochastic evolutionary game theory [25]. A series of recent papers [6,3,
4], has seen the first rigorous analyses of 1-dimensional unperturbed Schelling models, in an asymptotic
framework largely unknown in statistical mechanics. Here we provide the first such analysis of 2- and
3-dimensional unperturbed models, establishing most of the phase diagram, and answering a challenge
from [6].
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Ising model · Spin Glass
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1 Introduction

Schelling’s spatial proximity models of segregation [18] provided strikingly simple examples the emergence
of order from randomness. Subsequently, and particularly following Young [25], a range of variations of his
models have been studied by mathematicians, statistical physicists, computer scientists, social scientists,
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and others, making Schelling segregation one of the best known theoretical examples of self-organising
behaviour (indeed, this was cited by the committee upon awarding Schelling the Nobel memorial prize
for Economics in 2005).

Schelling models have the following general set-up: a population of individuals of two types are initially
randomly distributed on a grid (or other graph). Each individual considers a certain region around it to
be its neighbourhood, and it has an intolerance (τ), expressing the proportion of its neighbours it requires
to be of its own type in order to be happy.

Unhappy individuals then rearrange themselves in order to become happy. This may happen through a
variety of possible dynamics. In Schelling’s own work on 2-dimensional segregation, at each time step a
selected unhappy node would move to a vacant position where it would be happy. However, much sub-
sequent work on Schelling segregation has followed the breakthrough analysis of Young [25] who studied
a 1-dimensional model which dispensed with vacancies, where agents instead rearranged themselves via
pairwise swaps (at each time-step a randomly selected pair of unhappy agents of opposite types swap
positions).

The lack of vacancies is arguably a closer approximation to life in modern cities without large numbers of
uninhabited properties, and has proved itself more amenable to mathetatical analysis. Numerous variants
of Young’s model have subsequently been investigated, notably in the work of Zhang [26–28], as well as
the series of papers of which the current work is a part [6,3,4].

Young’s pairwise-swapping dynamic is known to statistical physicists as the Kawasaki dynamic. An even
simpler choice, adopted in [4] and the current paper, is the Glauber dynamic, whereby at each time-step a
single randomly selected unhappy agent switches type. Although simple, this is by no means unintuitive,
the idea is that an agent who becomes unhappy moves out of the city, and is replaced by an agent
of the opposite type. Thus our model is an open system, and we posit limitless pools of both types
beyond the system. The Glauber dynamic also, we argue, brings the model closest to others in the same
statistical-physical family, such as the Ising and Hopfield models (see 1.2 below).

Ever since Schelling’s original simulations with zinc and copper coins on a checkerboard back in 1969, the
robustness of the phenomenon of segregation has been recognised: as the process unfolds, large clusters
emerge, consisting of individuals of only one type. This same phenomenon has appeared in diverse variants
of the model, strikingly including models in which agents have an active preference for integration [27,
16]. Seen from a game theoretic perspective, this provides an example of a recurrent theme in Schelling’s
research – especially as elaborated upon in [19] – that individuals acting according to their interests at
the local level can produce global results which may be unexpected and undesired by all. Understanding
this phenomenon has been the goal of much subsequent research.

Besides changing the dynamic, Young in [25], made another highly influential innovation by introducing
noise to the model. Much subsequent research has focussed on such perturbed variants, which can be
thought of as systems of temperature T > 0, in which agents have a small but non-zero probability of
acting against their own interests. Young used techniques from evolutionary game theory – an analysis
in terms of stochastically stable states – to analyse such a model. These ideas were then substantially
developed in the work of Zhang [26–28]. While the language used may differ from that of those of statistical
physicists, the basic analysis is essentially equivalent: Zhang establishes a Boltzmann distribution for the
set of configurations, and then his stochastically stable states correspond to ground states.

1.1 Our contribution

The difficulty in analysing the unperturbed (or temperature T = 0) variants of the model stems from the
large number of absorbing states for the underlying Markov process. Nevertheless, a breakthrough came
in [6], where Brandt, Immorlica, Kamath and Kleinberg used an analysis of locally defined stable config-
urations, combined with results of Wormald [24], to provide the first rigorous analysis of an unperturbed
1-dimensional Schelling model, for the case τ = 0.5 under Kawasaki dynamics. In [3] the authors gave a
more general analysis of the same model for τ ∈ [0, 1]. In [4], the authors then analysed variants of the
model under Glauber dynamics (as well as variations thereupon), with an additional innovation: the two
types of agent may have unequal intolerances τα, τβ ∈ [0, 1]. We extend the analysis of this phenomenon
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Fig. 1 The evolving process: n = 600, w = 5, τα = 0.44, τβ = 0.42.

in the current paper. This modification of the model has justification in social research. See for exam-
ple [20], where it is found that black US citizens are happier in integrated neighbourhoods than their
white compatriots. It has often been argued (including by the authors in [4] and Schelling himself in for
example [19]) that the simplicity of Schelling models make them relevant in areas far beyond the topic
of racial segregation. Another application might be that of product adoption: which of two competing
products customers choose. The peer-effect aspect of this phenomenon can be addressed with a Schelling
model. In such a context, the asymmetry of τα, τβ reflects the idea of ‘difficulty of engagement’, which
is argued in [7] to offer insights into the obstacles that innovative ecological products face in terms of
market penetration.

Throughout this series of papers, although the proofs vary widely in their details, the analysis hinges on
the use of a spread of models across which the neighbourhood radius (w) size grows large (but remains
small relative to the size of the whole system, n). This allows exact results to be obtained asymptotically,
by careful probabilistic analysis of various structures occurring in the initial configuration. (It might be
objected, at this point, that neighbourhoods of arbitrarily large size are not in the spirit of models of
racial segregation. However, this should be seen as a mathematical device allowing the outcome to be
predicted with arbitrarily high precision. In simulations of all models in this family, relatively small values
of w are generally sufficient for a clear outcome. See Figures 1, 2, 3 for examples.)

The current paper uses the same approach to extend these results to the two and three dimensional
models. A mathematical account of unperturbed Schelling segregation in higher dimensions has been
seen as a challenging problem for some time. As Brandt, Immorlica, Kamath and Kleinberg say in [6]:

Finally, and most ambitiously, there is the open problem of rigorously analyzing the Schelling model in other graph

structures including two-dimensional grids. Simulations of the Schelling model in two dimensions reveal beautiful

and intricate patterns that are not well understood analytically. Perturbations of the model have been successfully

analyzed using stochastic stability analysis [. . . ] but the non-perturbed model has not been rigorously analyzed.

Two-dimensional lattice models are almost always much more challenging than one-dimensional ones, and we suspect

that to be the case with Schelling’s segregation model. But it is a challenge worth undertaking: if one is to use the

Schelling model to gain insight into the phenomenon of residential segregation, it is vital to understand its behavior

on two-dimensional grids since they reflect the structure of so many residential neighborhoods in reality.

Thus the aim of this paper is to answer this challenge, providing the first rigorous analysis of the two and
three dimensional unperturbed models of Schelling segregation. Our work gives an almost comprehensive
picture of the phase diagram of such a model under Glauber dynamics with distinct intolerances τα
and τβ , revealing interesting phase transitions around certain thresholds, which are solutions to derivable
equations and which we numerically approximate. Some grey areas around these thresholds remain, where
the behaviour of the model is not proven rigorously, but these correspond to relatively small intervals.

Let us briefly compare the results of the current paper (namely Theorems 1.2 and 1.3 below) with those
of [4] where the authors considered a 1-dimensional version of the same model. This can be summed up
by comparing the two illustrations of Figure 4 (representing the 2- and 3-dimensional models) with the
final illustration within Figure 4 of [4] representing the 1-dimensional model. The overall picture is very
similar; the differences are in the precise locations of the thresholds between staticity almost everywhere
and takeover almost everywhere (around 0.3531 in the 1-dimensional case, 0.3652 in the 2-dimensional
case, and 0.3897 in the 3-dimensional case), as well as the fact that in the 2- and 3- dimensional model we
continue to have small grey areas around those thresholds where the outcome has not yet been rigorously
established. This will be explained further in Section 1.3.2 below.
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Fig. 2 The evolving process: n = 600, w = 10, τα = 0.44, τβ = 0.42.

Following the online release of an earlier version of the current paper, Immorlica, Kleinberg, Lucier, and
Zadomighaddam released an unpublished manuscript1 which analyses a closely related, but interestingly
distinct, two dimensional Schelling system. They show, under a continuous time Poisson clock dynamic,
and with the hypothesis that agents of both types share the same intolerance which is close to, but less
than 0.5 (i.e. τα = τβ = 1−ε

2 ), that the size of the segregated regions which emerge will, with probability

approaching 1, be of exponential size in the neighbourhood radius (eΘ(w2)).

1.2 The Schelling model across science

While Schelling’s ultimate concern was to understand some of the mechanisms underlying racial segrega-
tion in the United States, such a model may also be applied to many contexts in which the ‘individuals’
represent particles or agents of a sort which might more plausibly behave according to simple rules which
govern their behaviour at the local level. In fact these model are rightly seen as fitting within a larger
family of discrete time models arising in diverse fields. Before we give a formal description of our model,
we review two other important examples.

1.2.1 Ising Models

Many authors have pointed out direct links to the Ising model, used to analyse phase transitions in the
context of statistical mechanics (see [21,10,17,11,15]). As this observation suggests, the dynamics can
fruitfully be analysed by assigning an energy level to any given configuration, typically corresponding to
some measure of the mixing of types. Typically, the Ising model is considered at temperature T > 0,
meaning that while transitions are more much likely to occur from configurations with higher energy to
those with lower energy, they may occasionally also occur in the opposite direction. As discussed above,
this corresponds to a perturbed Schelling model, and eases the analysis.

In models with an unperturbed dynamics (i.e. with T = 0), which are the focus of the current paper,
transitions which increase the energy never occur. Thus our results fit into the statistical physical theory
of rapid cooling.

There is another important remark to make. In the current paper (as in [4]), we consider models in which
individuals of different type may have unequal intolerances, τα and τβ . As discussed in Section 1.3. of [4],
this equates to an Ising model with a non-standard external field whose strength differs for spins in state
+1 spins compared to those in state -1. Assuming the usual notation for an Ising model, if we attempt
to construct a Hamiltonian function in the standard way:

H = −
∑

||i−j||∞≤w

σiσj +
∑

i

σiK(σi)

we find that in general |K(+1)| 6= |K(−1)|, meaning that H does not act as an energy function, since it
may increase as well as decrease (even in the unperturbed case).

Thus, our results below can be understood in relation to an Ising model under rapid cooling, with range
of interaction w and a non-standard external field as described.

1 N. Immorlica, R. Kleinberg, B. Lucier, M. Zadomighaddam Exponential Segregation in a Two-Dimensional Schelling
Model with Tolerant Individuals, preprint, arXiv: 1511.02537.
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Static almost everywhere
With high probability a random node does not
change its type throughout the process.

α (or β) takeover almost everywhere
A random node has high probability of being of type
α (β respectively) in the final configuration.

α (or β) takeover totally
With high probability all nodes are of type α (β re-
spectively) in the final configuration.

Table 1 The three (or five) behaviours of the model.

1.2.2 Neural Networks

Hopfield networks provide an example of a model from the same family, in which the unperturbed
dynamics are of particular interest. Introduced by Hopfield [13] in 1982 these are recurrent artificial
neural networks, which have been much studied as a form of associative memory. Here, in fact, the
unperturbed dynamics would seem to be an essential aspect of the intended functionality—corresponding
to any initial state the absorbing state reached within a finite number of steps of the dynamical process
is the ‘memory’ which the net is considered as associating with that input. Many authors have analysed
the connections to spin-glass models [1]. A major difference with the Schelling model though, is that the
standard form of Hopfield network has no geometry: each threshold node takes inputs from all others.
From a biological perspective, however, it is of interest to study models of sparse connectivity [9,8]. The
results of this paper can easily be adapted so as to correspond to a form of ‘local’ Hopfield net, in which
nodes arranged on a grid are only locally connected.

1.2.3 Cascading Phenomena

Our own avenue into these questions came via connections to the study of cascading phenomena on
networks as studied by Barabási, Kleinberg and many others, a good introduction to which can be found
in [14]. The dynamics of the Schelling process are either identical or almost identical to versions of the
Threshold Model used to model the flow of information, technology, behaviour, viruses, opinions etc., on
large real world networks. Depending on context, both the perturbed and unperturbed dynamics may be
of interest here. The principal difference with the Schelling model is typically underlying network, instead
of a regular lattice, a random graph of some form (e.g. Watts-Strogatz graph [23], or Barabási-Albert
preferential attachment [2]), which better reflects the clustering coefficient and degree distribution of the
real world network in question.

Given the results of this paper, an immediate question is whether the techniques developed here can be
applied to understand emergent phenomena on such random structures. Along these lines, Henry, Pra lat
and Zhang have described a simple but elegant model of network clustering [12], inspired by Schelling
segregation. Although an interesting system, it does not display the kind of involved threshold behaviour
that one might expect; thus there may be more to be said here.

1.3 The model

We describe the two dimensional model first, and it is then simple to extend to three dimensions. For
the two dimensional model we consider an n × n ‘grid’ of nodes. To avoid boundary issues, we work on
the flat torus T = [0, n − 1) × [0, n − 1), i.e. R2/ ≡ where (x, y) ≡ (x + n, y) ≡ (x, y + n). Thus, in the
context of discussing Euclidean coordinates, arithmetical operations are always performed modulo n. We
let Rn and Nn denote the reals and the natural numbers modulo n respectively. Formally, then, ‘nodes’
are elements of N2

n. In the initial configuration (at stage 0) each node is assigned one of two types, either
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α or β. In this initial configuration the types of nodes are independent and identically distributed, with
each node having probability 0.5 of being type α.

For each node we also consider a certain neighbourhood, with size specified by a parameter w: the neigh-
bourhood of the node u, denoted N (u) is the set of nodes v such that ||u− v||∞ ≤ w. So far, then, we
have specified two parameters for the model, n and w. The two remaining parameters are the intolerance
levels τα, τβ ∈ [0, 1]. At any given stage we say that a node u of type α is happy if the proportion of the
nodes in N (u) which are of type α is at least τα (note that u is included in its own neighbourhood).
Similarly a node u of type β is happy if the proportion of the nodes in N (u) which are of type β is at
least τβ . We say that a node is hopeful if it is not happy, but would be happy if it changed type (the
types of all other nodes remaining unchanged). The dynamical process then unfolds as follows. At each
stage s+ 1, we consider the set of hopeful nodes at the end of stage s. Taking each in turn we change the
type, providing it is still hopeful given earlier changes during stage s + 1. The process terminates when
there are no remaining hopeful nodes.

In the description of the dynamic process above, we have stated that during each stage s + 1, each node
which was hopeful at the end of stage s is taken in turn, the type then being changed if it still remains
hopeful given earlier changes during stage s + 1. For the sake of definiteness, we may consider the nodes
to be lexicographically ordered, but this choice is essentially arbitrary, and it will be clear from what
follows, that all results apply for any ordering of the nodes (since the particular form of the ordering
is not used in the proof of any lemma). In fact the model will behave in an almost identical fashion if,
instead of taking the hopeful nodes in order at each stage, we instead pick hopeful nodes uniformly at
random. This fact is easy verified by simulation, and our expectation is that it would not be difficult
to use techniques applied in [4] to extend the results presented here to such a dynamics. The choice to
consider nodes in order at each stage, simply means that certain aspects of the dynamics become easier to
analyse. Roughly, this is because we are immediately guaranteed that the process will unfold at the same
rate at different locations on the grid, rather than having to apply a probabilistic analysis to show that
formal statements to this effect will be close to true most of the time. It is important for the analysis,
however, that the set of hopeful nodes considered during stage s + 1, is fixed at the end of stage s –
thereby avoiding ‘waves’ of changes traversing large distances in a single stage.

It is easy to define an appropriate Lyapunov function, establishing that the process must eventually
terminate. For example, one may consider the sum over all nodes u, of the number nodes of the same
type as u in N (u). The three dimensional model is defined identically, except that nodes are now elements
of N3

n. Once again, N (u) is the set of nodes v such that ||u− v||∞ ≤ w, but obviously the ℓ∞ metric is
now understood in three dimensions.

Note that the numbers of nodes of each type do not remain stable throughout the process. Although the
initial expectation is 50% of each type, during the process it is conceivable that one type may increase
or decrease its population. In fact, intuitively one would expect that the type with the least intolerance
level has an advantage over the other type, as it is less susceptible to changes. As we are going to see in
the next section, this is largely true but there are several caveats. For example if both intolerance levels
are very low or very high, then one would expect the system to remain largely stable. In the following
section we make precise statements about what can be rigorously proved, establishing most of the phase
diagram.

1.3.1 Behaviors of the model

Our results are asymptotic in nature, and we will use the shorthand “for 0 ≪ w ≪ n” to mean “for all
sufficiently large w, and all n sufficiently large compared to w”. By a scenario we mean the class of all
instances of the model with fixed values of τα, and τβ , but w and n varying. We will identify a scenario
with its signature pair (τα, τβ).

The phase diagram of the model will be expressed according to five behavior types, indicating the degree
of growth of one population over the other that can occur by the time the model reaches its final state.
Our results and analysis justify this natural choice of behavioural classification. Table 1 shows the names
we give to the different behaviors of the model, along with their corresponding descriptions. The precise
definitions are given in Definition 1.1.
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Fig. 3 Simulations showing three behaviors of the model, with α and β nodes depicted as red and green respectively. From
left to right we have “static almost everywhere”, “β takeover almost everywhere” and “β takeover totally”. These are the
final states of the model with n = 600, w = 2 and (τα, τβ) equal to (0.249,0.1), (0.4,0.3) and (0.6, 0.4) respectively.

Definition 1.1 (Five different behaviors) We list the three (or five, taking into account the two types)
main ways in which a scenario can behave:

(i) A scenario is static almost everywhere if the following holds for every ǫ > 0: for 0 ≪ w ≪ n a node
u chosen uniformly at random has a probability > 1− ǫ of having its type unchanged throughout the
process.

(ii) Type α (β) takes over almost everywhere if the following holds for every ǫ > 0: for 0 ≪ w ≪ n
a node u chosen uniformly at random has a probability > 1 − ǫ of being of type α (β) in the final
configuration.

(iii) Type α (β) takes over totally if the following holds for every ǫ > 0: for 0 ≪ w ≪ n the probability
that all nodes are of type α (β) in the final configuration exceeds 1 − ǫ.

Figure 3 shows the final states of the model for three different choices of signature (τα, τβ). The first state
indicates a “static almost everywhere” behavior, with only occasional areas where nodes have switched
to type β. The second state indicates an “almost everywhere β takeover”, with the occasional small areas
where nodes have succeeded in keeping the α-type. Finally the third state is a total β takeover. The
signatures for the corresponding behaviors illustrate Theorem 1.2 of the next section.

In general, when τα < τβ , we might expect the α type to be more persistent in the process. In order
to formally establish results expressing such expectations, we often need a stronger notion of inequality,
expressing that (for example) τα is sufficiently less than τβ . In the case of the 2-dimensional model we
denote this relation by τα ⊳ τβ (the formal definition is given in Definition 1.4). In the case of the 3-
dimensional model sufficient inequality is a slightly stronger condition, and is denoted by τα 2 τβ (the
formal definition is given in Definition 1.5). Note that ‘sufficiently less’ has different meanings for the
2-dimensional and 3-dimensional models. This will not cause confusion as the two models are dealt with
separately, and we use different symbols for the two notions of inequality. The second item of Figure 5
illustrates the relation between sufficient inequality for the 2-dimensional and 3-dimensional models with
the usual inequality.

1.3.2 Main theorems

Our main result for the two dimensional model is the following classification of behaviors of the model,
according to the signature (τα, τβ). The different cases correspond to the positions of the two intolerance
levels with respect to each other and other values like 0.5, 0.25 and a certain constant κ ≅ 0.365227 that
will be formally defined (as the unique solution of a certain equation) shortly. Recall that ⊳ indicates the
‘sufficiently less’ relation for the two dimensional model (see Definition 1.4). Given the symmetric roles
of α and β, it is clear that the following theorem (and all those which follow) also holds with the roles of
α and β reversed. From now on we shall not explicitly mention this fact, and will leave it to the reader
to fill in these symmetries.
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Fig. 4 The phase diagrams of the two and the three dimensional models respectively. Note that in the latter we have a
larger grey region, corresponding to behaviour which we have not been able to rigorously establish.

Theorem 1.2 (Behavior of the two dimensional model) The behavior of the two dimensional model
is dictated by the signature (τα, τβ) as follows:

(a) If τα, τβ < 0.25 then the scenario is static almost everywhere.

(b) If κ < τα < 0.5 and τβ ⊳ τα then β takes over almost everywhere.

(c) For τβ < 0.5 < τα, β takes over totally.

(d) If 1 − κ > τα > 0.5 and τβ ⊲ τα then α takes over almost everywhere.

(e) If τα, τβ > 0.75 then the scenario is static almost everywhere.

where κ is the unique solution in [0, 1] to (1−2κ)1−2κ = 22(1−κ)κκ(1−κ)3(1−κ) (numerically κ ≅ 0.365227).

So if τα and τβ are both sufficiently small then most nodes remain unchanged throughout the process. If
at least one of τα and τβ is reasonably large while remaining in the interval (0, 0.5), however, then the
situation changes dramatically. Here ‘reasonably large’ means above the threshold κ. While it may not
be immediately obvious where the equation defining κ comes from, it will be derived later by comparing
the probabilities of certain structures in the initial configuration.

Figures 1 and 2 display the evolving process for simulations corresponding to the scenario of clause (b) of
Theorem 1.2.2 Here nodes of type α are depicted red, while those of type β are green. The shade of red
or green corresponds to the number of same-type nodes within N (u): the brighter the shade the more
nodes there are of the same type as u in N (u). Since τβ ⊳ τα, most nodes are of type β in the final
configuration, with this proportion tending to 1 as w → ∞.

Using almost identical proofs, we can get slightly weaker results for the three dimensional model.

Theorem 1.3 (Behavior of the three dimensional model) The behavior of the three dimensional
model is dictated by the signature (τα, τβ) as follows:

(a) If τα, τβ < 0.25 then the scenario is static almost everywhere.

(b) If κ∗ < τα < 0.5 and τβ 2 τα then β takes over almost everywhere.

(c) For τβ < 0.5 < τα, then β takes over totally.

(d) If 1 − κ∗ > τα > 0.5 and τβ 3 τα then α takes over almost everywhere.

(e) If τα, τβ > 0.75 then the scenario is static almost everywhere.

where κ∗ is the unique solution in [0, 1] to (1− 2κ∗)4(1−2κ∗) = 223−8κ∗κ19κ∗∗ (1−κ∗)27(1−κ∗) (numerically,
κ∗ ≅ 0.3897216).

2 The C++ code for these simulations is available at http://barmpalias.net/schelcode.shtml.
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Fig. 5 The function g of Definitions 1.4 and 1.5, for the values of k that we use. In the second figure the horizontal axis is
τα and the perpendicular axis is τβ . Then the three regions show the relations τβ 2 τα, τβ ⊳ τα, τβ < τα in [0, 0.5] as well
as τβ 3 τα, τβ ⊲ τα, τβ > τα in [0.5, 1].

Note that our results for the three dimensional model are the same as for the two dimensional model
except that the thresholds are slightly different (making the gaps in the phase diagram slightly larger).

Sufficient inequality for the 2D and 3D models

In this section we formally define the notions of sufficient inequality (denoted by ⊳ and 2) for the two
dimensional and the three dimensional models respectively. The particulars of the definition result from
comparing the probabilities of certain structures in the initial configuration, and the motivation behind
the definition will become clear in Section 2.

Definition 1.4 (Sufficient inequality for 2D) We let g(x, k) = xkx(1− x)k(1−x). For τ0, τ1 ∈ (0, 0.5)
we say that τ0 is sufficiently less than τ1, denoted τ0 ⊳ τ1, if g(τ0, 2) > 2g(τ1, 3). For τ0, τ1 ∈ (0.5, 1) we
say that τ0 is sufficiently greater than τ1, denoted τ0 ⊲ τ1, if 1 − τ0 is sufficiently less than 1 − τ1.

Note that the function g is decreasing in [0, 0.5] and increasing in [0.5, 1] (see the first item of Figure
5). Hence ⊳ in [0, 0.5] is a strengthening of < and ⊲ in [0.5, 1] is a strengthening of >. The requirement
that τβ ⊳ τα is not overly strong, as the second item of Figure 5 shows. Table 2 is a chart that shows for
various values of τα in [0, 0.5] the amount by which τβ needs to be smaller in order for τβ ⊳ τα to hold
(and similarly for 2 of Definition 1.5).

Definition 1.5 (Sufficient inequality for 3D) Again let g(x, k) = xkx(1−x)k(1−x). For τ0, τ1 ∈ (0, 0.5)
we say that τ0 is sufficiently less than τ1, denoted τ0 2 τ1, if g(τ0, 8) > 219g(τ1, 27). For τ0, τ1 ∈ (0.5, 1)
we say that τ0 is sufficiently greater than τ1, denoted τ0 3 τ1, if 1 − τ0 is sufficiently less than 1 − τ1.

The relation 2 is significantly stronger than ⊳, as is made clear by Figure 5 and Table 2.

1.4 Further notation and terminology

The variables u and v are used to range over nodes, while r, x, y, z, τ range over R. We let x and y range
over either R

2 or R
3 depending on context, while a, b, c, d, e, i, j, k, n,m,w range over N. Often we shall

use x and y (and z when working in three dimensions) to specify the coordinates of a node u = (x, y) –
so while x, y and z range over R, often they will be elements of N.

In the context of discussing a given scenario (τα, τβ), we say that an event X occurs in the limit, if for
every ǫ > 0, X occurs with probability > 1 − ǫ for 0 ≪ w ≪ n, i.e. X holds with probability > 1 − ǫ
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whenever w is sufficiently large and n is sufficiently large compared to w, and where it is to be understood
that how large one has to take w and how large n must be in comparison to w may depend upon ǫ, τα
and τβ . When working in two dimensions we let Cu,r be the circle of radius r centred at u, and we let
C†

u,r be the disc of radius r centred at u, i.e. the set of all x ∈ T with |u−x| ≤ r (where |u−x| denotes

the Euclidean distance between u and x). Then we extend this notation to A ⊆ T as follows. If A ⊂ C†
u,r

then we define A† with respect to C†
u,r to be the intersection of all convex subsets of C†

u,r containing A.

If r < 0.25n and A ⊂ C†
u,r, then we shall call A local. If A is local then A† is the same with respect to

all C†
u,r such that r < 0.25n and A ⊂ C†

u,r, and we shall suppress mention of C†
u,r in this case, referring

simply to A†. In the context of discussing A which is local (such as N (u) for a node u) and two nodes
u = (x, y) and v = (x′, y′) in A, we say that x ≤ x′ if there exists r < 0.5n with x+ r = x′ (and similarly
for y and y′). By an m-square we mean a subset of N2

n of the form [x, x+m)× [y, y+m) for some x, y ∈ N.
By an a× b rectangle we mean a subset of N2

n of the form [x, x + a) × [y, y + b) for some x, y, a, b ∈ N.

1.5 Overview of the proof

At the start of Section 2 we shall prove Theorem 1.2 (a), which along with Theorem 1.2 (e) is the easiest
case and amounts to little more than some easy observations. The bulk of the work will then be in the
remainder of Section 2, in which we prove Theorem 1.2 (b) and Theorem 1.2 (c). With these in place,
Theorem 1.2 (d) and Theorem 1.2 (e) will follow from certain symmetry considerations, as described in
Section 3. In Section 4 we describe how to modify the proofs for the two dimensional model, to give all of
the corresponding theorems for the three dimensional model. Throughout, certain proofs which are of a
technical nature, and which the reader might profitably skip on a first reading, are deferred to Section 5.
In the remainder of this subsection, we outline some of the basic ideas behind the proof of Theorem 1.2.

The key to the proof lies in considering certain local structures, which might exist in the initial con-
figuration or else might develop during the dynamic process. Our first central notion is that of a stable
structure:

Definition 1.6 (Stable structures) We say that a set of nodes A is an α-stable structure if, for
every u ∈ A, there are at least τα(2w + 1)2 many α nodes in N (u) ∩ A. We define β-stable structures
analogously.

The point of an α-stable structure is this (as may be seen by induction on stages): no node of type α which
belongs to an α-stable structure can ever change type. We shall also be interested in certain conditions
on N (u) and variants of this neighbourhood:

– (Partial neighbourhoods.) Suppose that ℓ is a straight line passing through N †(u). Let A1 be all
those points in N †(u) on or above ℓ, and let A2 be all those points in N †(u) on or below ℓ. If

µ(A†
i ) = γ(2w + 1)2 (µ denotes Lebesgue measure), then we call Ai a γ-partial neighbourhood of u,

with defining line ℓ. If u is an α node, we let pnαγ,τ (u) be the event that there exists some γ-partial

neighbourhood of u which contains at least τ(2w+ 1)2 many α nodes in the initial configuration (and
similarly for β). We also let pnαγ,τ (u)[s] be the corresponding event for the end of stage s, rather than

the initial configuration.3

– (Extended neighbourhoods.) We say that uhατ (u) holds if there are strictly less than τ(2w+ 1)2 many
α nodes in N (u) in the initial configuration (and again we let uhατ (u)[s] denote the corresponding
event for the end of stage s). If u = (x, y) then the right extended neighbourhood of u, denoted N ⋄(u),
is the set of nodes (x′, y′) such that x−w ≤ x′ ≤ x+ 2w and |y− y′| ≤ w. We say that ruhατ (u) holds
if there are strictly less than τ(2w + 1)(3w + 1) many α nodes in N ⋄(u) in the initial configuration.

So a γ-partial neighbourhood of u is a subset of N †(u) (of a particularly simple form) which has measure
γ(2w + 1)2. If pnαγ,τα(u) holds, then it is not only the case that u is happy – it has some γ-partial neigh-
bourhood which already contains enough α nodes for u to be happy. The right extended neighbourhood

3 One should think of pn as p-artial n-eighbourhood, uh as u-nh-appy, and ruh as r-ight-extended neighbourhood u-nh-
appy.
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τα τβ ⊳ τα τβ 2 τα

0.390000 0.024443 0.090076
0.400000 0.022266 0.082213
0.410000 0.020076 0.074255
0.420000 0.017874 0.066211

τα τβ ⊳ τα τβ 2 τα

0.430000 0.015661 0.058092
0.450000 0.011212 0.041673
0.470000 0.006737 0.025074
0.490000 0.002247 0.008370

Table 2 This chart shows, for various values of τα in [0, 0.5], the minimum amount by which τβ needs to be less than τα
in order to have τβ ⊳ τα or τβ 2 τα respectively.

N ⋄(u) is a (particularly simple) superset of N (u). While it is not strictly true that for τ < 0.5, ruhατ (u)
implies uhατ (u), it is not difficult to see that the former condition is less likely than the latter.

While the notion of a stable structure might seem essentially passive, we can strengthen the notion to
give a form of stable structure which will tend to grow over stages:

Definition 1.7 (Firewalls) If all nodes in C†
u,rw are of type β (at some stage) then this set of nodes is

called a β-firewall of radius rw centred at u (at that stage). We say v is on the outer boundary of C†
u,rw

if v /∈ C†
u,rw but has an immediate neighbour belonging to this set, i.e. there exists v′ with ||v−v

′||∞ = 1

and v
′ ∈ C†

u,rw.

Now suppose that τα, τβ < 0.5, that γ > 0.5 is fixed, and that we choose some r∗ ∈ N
+ sufficiently large

that, for 0 ≪ w ≪ n:

(†a) Any node v ∈ C†
u,r∗w satisfies the condition that |N (v) ∩ C†

u,r∗w| ≥ τβ(2w + 1)2.

(†b) Any node v on the outer boundary of any C†
u,r∗w has all of N (v) − C†

u,r∗w contained in some
γ-partial neighbourhood of v.

We may now observe that if r ≥ r∗ then for 0 ≪ w ≪ n: a) any β-firewall of radius rw is a β-stable
structure, and b) any α node v on the outer boundary of a β-firewall of radius rw at stage s will be
hopeful, so long as pnαγ,τα(v)[s] does not hold. For b), our choice of r∗ implies that v will be unhappy,
and then since τα, τβ < 0.5 unhappiness automatically implies being hopeful. The point is this:

A β-firewall of sufficient radius will grow over stages, so long as no node v on the outer boundary
satisfies pnαγ,τα(v)[s].

With these ideas in place, we can now sketch our approach to the proof of Theorem 1.2. First of all
suppose τα, τβ < 0.25 and consider Theorem 1.2 (a). The basic idea is to show that for 0 ≪ w ≪ n,
a node u0 chosen uniformly at random very probably belongs to a structure which is both α-stable
and β-stable in the initial configuration. From our previous observations, it then follows that no nodes
within this structure can ever change type. In fact a very simple choice of structure suffices – if we fix
r which is sufficiently large then we can show that, for 0 ≪ w ≪ n, C†

u0,rw will very probably be such
a stable structure. This follows because all nodes within the disc have (at least) close to half of their
neighbourhood within the disc, and since (via an application of the weak law of large numbers) we can
expect nodes within the disc to be quite evenly distributed.

Now suppose that τα > 0.25, τβ < τα < 0.5 and consider Theorem 1.2 (b). In this case it still holds that
unhappy nodes can be expected to be rare in the initial configuration, and since τβ < τα we have that
unhappy β nodes are less likely than unhappy α nodes. Taking w large we have that unhappy β nodes
are much less likely than unhappy α nodes. A naive approach might then proceed as follows. Choosing
u0 uniformly at random, for 0 ≪ w ≪ n we should be able to choose a large region around u0, Q say,
which can be expected to contain unhappy α nodes but no unhappy β nodes in the initial configuration.
What then can be expected to occur in the vicinity of an unhappy α node u in the early stages? Well if u
changes type then this may cause other α nodes in N (u) to become unhappy. If these then change type
then this may cause further α nodes to become unhappy, and so on. In this manner a cascade of changes
to type β may emanate out from the (rare) initially unhappy α nodes, bringing about the formation of
large β-firewalls. We might then look to establish that u0 very probably belongs to such a β-firewall in
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the final configuration (and so must ultimately be of type β). There are two immediate difficulties with
this initial plan, however.

1. First of all, it is not actually clear whether or not unhappy α nodes are likely to give rise to the
formation of large β-firewalls. It is for this reason that we consider the events ruhατα(u) and the
condition τβ ⊳ τα. The fact that τβ ⊳ τα is precisely what we need in order to be able to choose Q so
that in the limit there will be α nodes u in Q for which ruhατα(u) holds in the initial configuraiton–
a less probable condition than uhατα(u) – while maintaining the absence of unhappy β nodes in Q.
When ruhατα(u) holds we are able to show that a β-firewall of sufficient radius around u very probably
results.

2. The second problem is that we aren’t guaranteed that such a β-firewall will spread until α-firewalls
interfere with the process – all we observed above was that if r ≥ r∗ (with r∗ chosen appropriately)
then for 0 ≪ w ≪ n, any α node v on the outer boundary of a β-firewall of radius rw at stage s
will be hopeful, so long as pnαγ,τα(v)[s] does not hold. This is where κ comes into play. From the fact
that τα > κ, we are able to choose an appropriate γ > 0.5 and show that one can choose Q so as to
ensure the absence of nodes in Q for which pnαγ,τα(v) holds (in the initial configuration). We can then
establish that our large β-firewall, formed within Q in the early stages of the process, will spread until
u0 is contained within it.

Proving Theorem 1.2 parts (c), (d) and (e) then only involves simple modifications of the proofs for parts
(a) and (b).

2 The proof of clauses (a), (b) and (c) of Theorem 1.2

The proof of Theorem 1.2 (a)

As mentioned previously, proving Theorem 1.2 (a) requires only some simple observations. The basic
idea is to show that, under the hypothesis of the theorem, a node chosen uniformly at random will very
probably belong to both α-stable and β-stable structures in the initial configuration, and can therefore
never change type.

Throughout this subsection we assume that τα, τβ < 1
4 are fixed and we work for varying w and n such

that 0 ≪ w ≪ n. Choose τ1, τ2, τ3 such that 1
4 > τ1 > τ2 > τ3 > max{τα, τβ}. We consider a fixed node

u0, which is chosen uniformly at random. We first observe that all nodes in a large disc centred at u0

(with radius some multiple of w), will have (at least) close to half of their neighbourhood in the disc.
Then the aim is to show that for large w we can expect the nodes of each type to be distributed very
evenly in the disc, meaning that nodes in the disc can be expected to have (at least) close to 0.25(2w+1)2

many α nodes within the intersection of the disc and their neighbourhood (and similarly for β). In the
limit, then, this disc will be both an α-stable and a β-stable structure.

Lemma 2.1 (Neighbourhood/disc intersections) Suppose τ ′ < 0.5. There exists r such that, for
0 ≪ w ≪ n, all nodes u in C†

u0,rw satisfy |N (u) ∩ C†
u0,rw| > τ ′(2w + 1)2.

Proof Given u ∈ C†
u0,rw, let A be the set of all nodes in N (u) ∩ C†

u0,rw. Then the boundary of A† is a

lattice polygon. By Pick’s theorem µ(A†) = i+ b
2 −1, where µ denotes Lebesgue measure, i is the number

of nodes in the interior of A† and b is the number of nodes on the boundary. For sufficiently large r and
for 0 ≪ w ≪ n, µ(A†) > τ ′(2w + 1)2, so the result follows directly from Pick’s theorem.

For the remainder of this paragraph, fix r as guaranteed by Lemma 2.1 when τ ′ = 2τ1. Let u0 = (x, y)
and for u ∈ C†

u0,rw let N1(u) = N (u) ∩ C†
u0,rw. Now, to establish the even distribution of nodes of each

type within C†
u0,rw, we divide this region up into a fixed number (i.e. independent of w and n) of small

neighbourhoods. So, for some k ∈ N
+, let w′ = ⌈w/k⌉, and consider small neighbourhoods of the form

[x+ aw′, x+ (a+ 1)w′)× [y + bw′, y + (b+ 1)w′), where a, b ∈ Z and n ≫ aw′, n ≫ bw′. Let Π be the set
of these small neighbourhoods which lie entirely within C†

u0,rw. Given u ∈ C†
u0,rw, let N2(u) be the set of

nodes in N1(u) which belong to small neighbourhoods in Π entirely contained in N †(u). For sufficiently
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large k, and for 0 ≪ w ≪ n, we have that |N2(u)| > 2τ2(2w + 1)2 for all u ∈ C†
u0,rw. So fix k satisfying

this condition. Finally, choose ǫ > 0 such that (1− ǫ)τ2 > τ3. Then, since k is fixed, it follows by the weak
law of large numbers that in the limit, the proportion of the nodes in each small neighbourhood in Π
which are of type α is greater than 0.5(1 − ǫ) (and similarly for β). It then follows that, in the limit, all
nodes u ∈ C†

u0,rw satisfy the condition that the number of α nodes in N2(u) is greater than τ3(2w + 1)2,

and so is greater than τα(2w + 1)2 (and similarly for β). Thus C†
u0,rw will be both an α-stable and a

β-stable structure, as required.

The proof of clause (b) of Theorem 1.2

We suppose we are given a node u0 = (x0, y0), chosen uniformly at random. Recalling the discussion of
Section 1.5, our first aim is to establish a region Q containing u0, of size which means that in the initial
configuration (for 0 ≪ w ≪ n) we shall very likely find u ∈ Q such that ruhατα(u) holds, while at the
same time it is very unlikely that we will find any u such that pnαγ,τα(u) or uhβτβ (u) hold. The following
lemma is what we need in order to do this, and provides the motivation behind our definitions of κ and
τα ⊳ τβ . The proof appears in Section 5, and simply consists of applying standard bounds for the tail of
the binomial distribution together with multiple applications of Stirling’s approximation.

Lemma 2.2 (Properties of ⊳ and κ) Suppose that κ < τα < 0.5 and τβ ⊳ τα. Choose τ such that
τβ ⊳ τ < τα and κ < τ . Then there exists γ > 1

2 and ζ > 1 such that for 0 ≪ w ≪ n, and for a node u

selected uniformly at random, P(ruhατ (u)) > ζw ·P(pnαγ,τα(u)) and P(ruhατ (u)) > ζw ·P(uhβτβ (u)).4

For the remainder of this section we assume that τα, τβ satisfying the conditions of Lemma 2.2 are fixed.
Once and for all we choose (any) τ such that τβ ⊳ τ < τα and κ < τ , and then we let γ and ζ be as
guaranteed by Lemma 2.2. Given this choice of γ, we then let r∗ be sufficiently large that conditions (†a)
and (†b) of Section 1.5 are satisfied. We also assume we are given ǫ0 > 0. Our aim is to show that for
0 ≪ w ≪ n, the probability u0 will be of type β in the final configuration is > 1− ǫ0. The basic approach
is to establish that in the limit u0 will be consumed by a β-firewall which originates with Q.

Defining Q

To specify Q it will be useful to consider a grid of nodes with disjoint neighbourhoods, meaning that
these neighbourhoods are independently distributed in the initial configuration:

Definition 2.3 (Grid) Recall that u0 = (x0, y0). We say that v = (x, y) is on the grid if there exist
a, b ∈ Z with |a|, |b| < 0.25n/(2w + 1) and x = x0 + a(2w + 1), y = y0 + b(2w + 1). Suppose m = 2k + 1.
Then by the m-square on the grid centred at u0 we mean the set of nodes {(x0+a(2w+1), y0+b(2w+1)) :
a, b ∈ [−k,+k]}.

Now consider the initial configuration and let π(w) ∈ R be such that for u chosen uniformly at random,
P(ruhατ (u)) = 1/π(w). Note that 1/π(w) → 0 as w → ∞, and recall that

(

1 − 1
x

)x → 1
e as x → ∞. Take

k0 such that e−k0 ≪ ǫ0 (with ǫ0 as fixed previously), noting that k0 does not depend on w. Take the least
odd number m0(w) ∈ N

+ such that m0(w)2 ≥ π(w)k0. Let Q0 be the m0(w)-square on the grid centred
at u0. Then the probability that not a single node u ∈ Q0 satisfies ruhατ (u) is at most:

(

1 − 1

π(w)

)π(w)k0

which is ≪ ǫ0 for sufficiently large w. So far then, we have identified a set of nodes Q0, which has the
property that the following will fail to be true with probability ≪ ǫ0: there exists u ∈ Q0 such that
ruhατ (u) holds.

4 Here it is to be understood that how large one must take w, and how large n must be compared to w, may depend on
our particular choices of τ and γ (as well as the given values τα and τβ).



14 George Barmpalias et al.

We need a little more from the vicinity of u0 that we are going to work with. In order to ensure that
firewalls created inside Q†

0 will grow to include u0, we need a much larger region in which we will very
likely not have any nodes u for which either of pnαγ,τα(u) or uhβτβ (u) hold. We let Q1 be the (8w+1)m0(w)-

square on the grid centred at u0. Then we define Q = Q†
1. Let p be the probability that any node u ∈ Q

satisfies pnαγ,τα(u). Since the number of nodes in Q is ≤ π(w)k0(8w + 1)4, it follows that p is at most

π(w)k0(8w + 1)4 times the probability that pnαγ,τα(u) holds for u selected uniformly at random. So by

Lemma 2.2, p ≪ ǫ0 for sufficiently large w. A similar argument holds for uhβτβ (u). Thus we conclude that
for 0 ≪ w ≪ n, Typical vicinity fails to hold with probability ≪ ǫ0:

Definition 2.4 (Typical vicinity) We say that Typical vicinity holds if all of (1)–(3) below are
true:

1. ruhατ (u0) does not hold;

2. There exists u ∈ Q0 such that ruhατ (u) holds;

3. There does not exist any u in Q such that either of pnαγ,τα(u) or uhβτβ (u) hold.

Note that (1)–(3) from Definition 2.4 all refer to the initial configuration.

Definition 2.5 Consider the initial configuration. For τ ′ ∈ [0, 1] we say that juατ ′(u) holds if there are
less than τ ′(2w + 1)2 many α nodes in N (u), but changing the type of 2w+1 β nodes in N (u) would
cause this not to be the case. We say that rjuατ ′(u) holds if there are less than τ ′(2w + 1)(3w + 1) many
α nodes in N ⋄(u), but changing the type of 3w+1 β nodes in N ⋄(u) would cause this not to be the case.5

Observe that if Typical vicinity holds, then we are guaranteed the existence of u ∈ Q†
0 for which

rjuατ (u) holds.

Smoothness conditions

Our aim will be to show that for 0 ≪ w ≪ n, a large β-firewall can be expected to form in the early
stages of the process in the vicinity of u ∈ Q†

0 for which rjuατ (u) holds. To this end, however, we must
first examine what can be expected in the initial configuration, from the vicinity of u which is chosen
uniformly at random from amongst the nodes such that rjuατ (u) holds. In particular we are interested

in the three regions: C0(u) := C†
u,r∗w, C1(u) := C†

u,2r∗w
and C2(u) := C†

u,3r∗w
. In this subsection, we

look to establish certain smoothness conditions – that the types of nodes in these regions will be nicely
distributed.

For some large k1, which we shall specify later and which will not depend on w, the basic idea now is that
we want to cover the nodes in C2(u) with disjoint w

k1
-squares. This occasions the minor inconvenience

that k1 may not divide w. We therefore let Ik1
(u) be a pairwise disjoint set of rectangles, whose union

contains all nodes in C2(u), and such that:

– Each element of Ik1(u) has nonempty intersection with C2(u) and is of the form [x, x+ a)× [y, y+ b)
for some a, b ∈ {⌊w/k1⌋, ⌈w/k1⌉, ⌈w/k1⌉ + 1} and x, y ∈ N;

– Each element of Ik1(u) is either entirely contained in N ⋄(u), or else is disjoint from N ⋄(u).

Definition 2.6 (Smoothness for u) Suppose given k1 ∈ N
+ and ǫ1 > 0 and u such that rjuατ (u)

holds. We say that Smoothk1,ǫ1(u) holds if:

– For each A ∈ Ik1
(u) which is contained in N ⋄(u), the proportion of the nodes in A which are of type

α is in the interval [τ − ǫ1, τ + ǫ1].

– For each A ∈ Ik1
(u) which is disjoint from N ⋄(u), the proportion of the nodes in A which are of type

α is in the interval [0.5 − ǫ1, 0.5 + ǫ1].

5 Think of ju as j-ust u-nhappy and think of rju as r-ight extended neighbourhood j-ust u-nhappy.
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The following lemma is then almost immediate and is proved in Section 5:

Lemma 2.7 (Likely smoothness) Suppose given k1 ∈ N+ and ǫ1, ǫ > 0. Suppose that u is selected
uniformly at random from amongst the nodes such that rjuατ (u) holds. For 0 ≪ w ≪ n, the probability
that Smoothk1,ǫ1(u) holds is greater than 1 − ǫ.

Definition 2.8 (The smoothness event) We let u1 be chosen uniformly at random from amongst the

nodes u ∈ Q†
0 such that rjuατ (u) holds (so that if there exists no such node then u1 is undefined). For

any k1, ǫ1 > 0, we let Smooth(k1, ǫ1) be the event that u1 is defined and Smoothk1,ǫ1(u1) holds.

Our arguments so far suffice to show that, for any k1, ǫ1 > 0, if 0 ≪ w ≪ n then the probability that
Smooth(k1, ǫ1) fails to hold is ≪ ǫ0. We now want to examine what satisfaction of Smooth(k1, ǫ1) can tell
us about the proportion of α nodes in regions contained in C2(u1) but which are not one of the rectangles
in Ik1

(u1). In order to do so we define a couple of functions, which describe the proportion of α nodes
in a given set A, either in the initial configuration or else after all α nodes in B ⊆ A have changed type.
We also consider idealised versions of these functions which will be easier to work with most of the time.
Here and elsewhere B̄ denotes the complement of B.

Definition 2.9 Consider sets of nodes A,B ⊂ C2(u).

1. Let Ξ(A) be the proportion of the elements of A which are of type α in the initial configuration.

2. Let A0 = A ∩N ⋄(u) and A1 = A−A0. Define Ξ∗(A,u) = (τ |A0| + 0.5|A1|)/|A|.
3. Take the initial configuration and then change all nodes in B to type β. Let Ξ(A,B) denote the

proportion of the elements of A which are now of type α.

4. Let A0 = A ∩ B,A1 = A ∩ B̄ ∩ N ⋄(u) and let A2 = A − (A0 ∪ A1). We define Ξ∗(A,u, B) =
(τ |A1| + 0.5|A2|)/|A|.

So Ξ∗(A,u) gives the proportion of nodes in A which would be of type α, if exactly proportion τ of those
nodes in A ∩ N ⋄(u) were of type α, and exactly half of the nodes in the remainder of A were of type α.
On the other hand Ξ∗(A,u, B) gives the corresponding proportion if the same conditions hold, but then
we change all nodes in B to type β. One may think of Ξ∗ as an idealised version of Ξ. Satisfaction of
rjuατ (u) and Smoothk1,ǫ1(u) for large k1 and small ǫ1 will ensure that Ξ∗ is a reasonable approximation
to Ξ, in a sense that we will make precise.

Now we want to work with a greater variety of sets of nodes than just those in Ik1(u), but we still only
need to consider sets which are reasonably large and of a reasonably simple form:

Definition 2.10 Given a node u and k2 ∈ N+, we let I∗
k2

(u) be the set of all sets of nodes A such that
A ⊆ C2(u) and either (1) A is an a× b rectangle for a, b ≥ w/k2, or (2) the set of nodes inside a regular
polygon with sides of length ≥ w/k2, or (3) the union of two sets of the form (1) or (2).

So long as we restrict attention to sets of nodes in I∗
k2

(u) (for some k2 to be specified), the following
observation allows us to work with the idealised functions Ξ∗:

Observation 2.11 (Smoothness for elements of I∗
k2

(u)) Suppose given k2 ∈ N
+ and δ > 0. If k1

is sufficiently large and ǫ1 > 0 is sufficiently small then, for 0 ≪ w ≪ n, satisfaction of rjuατ (u) and
Smoothk1,ǫ1(u) suffices to ensure that:

(ı) For all A,B ∈ I∗
k2

(u), |Ξ(A) − Ξ∗(A,u)| < δ and |Ξ(A,B) − Ξ∗(A,u, B)| < δ.

Establishing the creation of firewalls

Now we choose values of k2 and δ which will allow us to argue that a large firewall is very probably
created around u1 in the early stages of the process. With these values specified, k1 and ǫ1 are simply
chosen to be those values guaranteed by Lemma 2.11, meaning that we can make use of our idealised
functions Ξ∗. Numerical values in the following definition are somewhat arbitrary, but suffice for our
purposes.
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Fig. 6 Rectangles in the proof of Lemma 2.13 and the octagon of Definition 2.15

Definition 2.12 (Choosing k2, δ, k1 and ǫ1) Choose k2 > (0.5 − τ)/(τα − τ), choose δ > 0 such that
δ ≪ min{(τα − τ)(2τ − 0.5)/(2k2), 10−5} and choose k1 sufficiently large and ǫ1 > 0 sufficiently small
that for 0 ≪ w ≪ n satisfaction of rjuατ (u) and Smoothk1,ǫ1(u) suffices to ensure satisfaction of (ı) (as
specified in Observation 2.11).

The next lemma finally establishes that a firewall of radius r∗w very probably forms around u1.

Lemma 2.13 (Firewalls) Suppose that rjuατ (u) and Smoothk1,ǫ1(u) both hold. Let t∗ = 2r∗w+ 3w and
suppose that there are no hopeful β nodes in C2(u) at any stage ≤ t∗. Then all nodes in C0(u) are of
type β at stage t∗.

Proof In what follows it will be convenient to assume that w is even. Only small modifications are required
to deal with the case that w is odd. It is also convenient to assume that r∗ > 2. The proof will basically
consist of repeated applications of condition (ı). We shall apply this condition in order to inductively
establish a sequence of increasingly large rectangles for which all nodes become of type β. Let u = (x, y),
let x∗ := x + w

2 and u
∗ := (x∗, y). The following argument is illustrated in the first picture of Figure 6.

The rectangles we consider are as follows (where a ∈ N
+):

– We let R0
a be the set of nodes v = (x′, y′) such that 0 ≤ x′ − x ≤ w and |y − y′| ≤ a;

– We let R1
a be the set of nodes v = (x′, y′) such that x− a ≤ x′ ≤ x + w + a and |y − y′| ≤ w;

– We let R2
a be the set of nodes v = (x′, y′) such that |x′ − x∗| ≤ w

2 + ⌈
√
2−1
2 w⌉ and |y′ − y| ≤ w + a.

Working always for sufficiently large w, we show first that all nodes in R0
⌊w/k2⌋ are of type β by the end

of stage 1. Then we show inductively that:

(†1) All nodes in R0
a are of type β by the end of stage a, for a ≤ w/2;

(†2) The same result holds for R0
a when a ≤ w;

(†3) All nodes in R1
a are of type β by the end of stage w + a, for a ≤ ⌈ w√

2
⌉;

(†4) All nodes in R2
a are of type β by the end of stage 2w + a, for all a ≤ ⌈

√
2−1
2 w⌉.

From there we shall be able to argue that all nodes in C0(u) will eventually be of type β.

So our first task is to establish that all nodes in R0
⌊w/k2⌋ will be of type β by the end of stage 1. We have

that R0
⌊w/k2⌋ ∈ I∗k2

(u) and by our choice of k2 the following holds for all nodes v in this rectangle:

Ξ∗(N (v)) ≤ τ + τα
2

.

Since δ < (τα − τ)/2, it follows from (ı) that for 0 ≪ w ≪ n, Ξ(N (v)) < τα. So for 0 ≪ w ≪ n, all α
nodes in R0

⌊w/k2⌋ are hopeful in the initial configuration and will be of type β by the end of stage 1, as
required.
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For any a ∈ N, let da = a/(2w + 1). In order to inductively establish (†1) – (†4) we then need the various
technical facts contained in the following proposition, which is easily verified by direct calculation.

Proposition 2.14 Given ǫ > 0, the following all hold for 0 ≪ w ≪ n:

1. For all a ∈ (⌊w/k2⌋, w/2] and all v ∈ R0
a −R0

a−1, |Ξ∗(N (v),u, R0
a−1) − (τ + (0.5 − 2τ)da)| < ǫ.

2. For all a ∈ (w/2, w] and v ∈ R0
a −R0

a−1, Ξ
∗(N (v), R0

a−1) < 0.25 + 0.25τ + ǫ.

3. For all a ∈ (0, ⌈ w√
2
⌉] and v ∈ R1

a −R1
a−1, Ξ

∗(N (v), R1
a−1) < 3/8 − (1/2 − τ)(1 − 1/

√
2)/4 + ǫ.

4. For all a ∈ (0, ⌈w(
√

2 − 1)/2⌉] and v ∈ R2
a − R2

a−1, Ξ
∗(N (v), R2

a−1 ∪ R1
⌈ w√

2
⌉) < 3/8 − (1/16)(3/2 −

1/
√

2) + ǫ.

Given (1) of Proposition 2.14, the induction to establish (†1) now goes through easily. Applying (ı) we have
that if 0 ≪ w ≪ n then for a ∈ (⌊w/k2⌋, w/2] and v ∈ R0

a−R0
a−1, Ξ(N (v), Ra−1) ≤ τ +(0.5−2τ)da +2δ.

Since da > 1/3k2 and δ < (2τ − 0.5)/(6k2) the induction step follows.

Similarly (2) of Proposition 2.14 gives us the induction step in establishing (†2). Applying (ı) we have
that if 0 ≪ w ≪ n then for a ∈ (w/2, w] and v ∈ R0

a − R0
a−1, Ξ(N (v), R0

a−1) < 0.25 + 0.25τ + 2δ. Now
for τ ∈ (κ, 0.5), 0.25 + 0.25τ < τ − 0.02 so, since δ < 10−5, the induction step follows.

For (†3) we have that if 0 ≪ w ≪ n then for a ∈ (0, ⌈ w√
2
⌉] and v ∈ R1

a − R1
a−1, Ξ(N (v), R0

a−1) < 3/8 −
(1/2−τ)(1−1/

√
2)/4+2δ. Now for τ ∈ (κ, 0.5) we have τ−(3/8−(1/2−τ)(1−1/

√
2)/4) > 2 ·10−5 > 2δ,

so the induction step follows.

Finally, for (†4) we have that if 0 ≪ w ≪ n then for a ∈ (0, ⌈w(
√

2 − 1)/2⌉] and v ∈ R2
a − R2

a−1,

Ξ(N (v), R2
a−1 ∪R1

⌈ w√
2
⌉) < 3/8 − 1/16(3/2 − 1/

√
2) + 2δ. Then for τ ∈ (κ, 0.5) we have

τ − (3/8 − (1/16)(3/2 − 1/
√

2)) > 0.02 > 2δ.

Once again the induction step goes through.

So far we have established that all nodes in R := R1
⌈w/

√
2⌉ ∪ R2

⌈w(
√
2−1)/2⌉ will be of type β by the end

of stage 3w. Now we wish to extend this and argue that all nodes in C0(u) will eventually be of type
β. Previously we observed that, for 0 ≪ w ≪ n, any α node v on the outer boundary of C0(u) will be
hopeful, so long as pnαγ,τα(v) does not hold. In order to get to the point where we can conclude that all

nodes in C0(u) will become of type β, we use a similar idea, but we must work with smaller regions than
C0(u) – this will not be a problem, since satisfaction of Smoothk1,ǫ1(u) guarantees the failure of much
weaker conditions than pnαγ,τα(v) for v ∈ C1(u). In fact the calculations will be simpler if we work with
regular octagons rather than circles:

Definition 2.15 (Octagon) Given r ∈ R, we let Sr(u∗) be the square in R
2 centred at u∗ with sides of

length r parallel to the axes. Then we let Or(u∗) be the largest regular octagon contained in S†
r(u∗), as

illustrated in the second image of Figure 6.

Note that for r0 = w(1 +
√

2), Or0(u∗) has sides of length w and that O†
r0(u∗) is entirely contained in

R† (where R is as specified above). Now if r ≥ r0 then for 0 ≪ w ≪ n, if v ∈ C1(u) is an α node on the
outer boundary of Or(u∗) then Ξ(N (v)) < 11/32 + 2δ < τ , and so v is hopeful. Inductively we conclude

that all nodes in C1(u) ∩ O†
r0+2a(u∗) are of type β by the end of stage 3w + a. Now there exists a with

C0(u) ⊂ O†
r0+2a(u∗) ⊂ C1(u). Since a < 2r∗w, the result follows as required.

The following lemma completes our proof of clause (b) of Theorem 1.2.

Lemma 2.16 (Eventual conversion) Suppose that Typical vicinity and Smooth(k1, ǫ1) both hold.
Then there exists a stage s after which u0 is always of type β.
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Proof Recall that we defined Q0 to be the m0(w)-square on the grid centred at u0, and that we defined
Q1 to be the (8w+1)m0(w)-square on the grid centred at u0. Now we define Q2 to be the 3m0(w)-square
on the grid centred at u0. First of all we observe that we are guaranteed a large number of stages before
the existence of any unhappy β nodes in Q2. This follows because a β node which is happy in the initial
configuration, cannot become unhappy until strictly after the first stage (if such a stage exists) at which
another β node in its neighbourhood becomes unhappy. For 0 ≪ w ≪ n we have that in the initial
configuration, if m = min{||u− v||∞ : v ∈ Q2, u is an unhappy β node}, then m > 3wm0(w)(2w + 1).
Thus we are guaranteed not to find any unhappy β nodes in Q2 at stages prior to t∗ = 3m0(w)(2w + 1).

Applying Lemma 2.13 we conclude that for 0 ≪ w ≪ n we shall have that by stage 2r∗w + 3w all nodes
in C0(u1) will be of type β. For 0 ≪ w ≪ n it then follows inductively, by the choice of r∗, that at each
stage < 2m0(w)(2w + 1) and after the creation of this firewall, its radius will expand by at least 1. Since
|u0 − u1| < m0(w)(2w + 1) we conclude that there exists some stage after which u0 always belongs to a
β-firewall of radius > r∗w centred at u1.

The proof of clause (c) of Theorem 1.2

This case is much simpler. Recall that in the proof of clause (b) of Theorem 1.2 we chose r∗ so that
certain conditions were satisfied. Now that we have τβ < 0.5 < τα, however, we can simply choose r∗
large enough such that for 0 ≪ w ≪ n if r ≥ r∗ then for any β node v inside a β firewall of radius rw,
close enough to a half of N (v) will lie inside the firewall to ensure that v is happy, and similarly any α
node v

′ on the outer boundary of such a firewall will be hopeful. Such a firewall must then spread until
every node is eventually contained inside it. For any ǫ > 0, if n is sufficiently large then there will exist
such a firewall in the initial configuration with probability > 1− ǫ. Whenever there exists such a firewall
all nodes must eventually be of type β.

3 The proofs of Theorems 1.2 (d) and 1.2 (e)

In this section we work with τα, τβ > 0.5. The proofs are simple modifications of the proofs of Theorems
1.2(b) and 1.2(a). Rather than describing those proofs again in their entirety, with only small changes, we
describe the necessary modifications. Roughly speaking, the idea is that we now replace considerations as
to whether a β node u has less than proportion τβ many β nodes in its neighbourhood, with the question
as to whether it has proportion ≤ 1 − τα many β nodes. If this holds then u is unhappy as type β, but
would be happy if it changed type (in fact we should take into account the effect of the type change of u
on the proportion, meaning that 1 − τα is not exactly the right proportion to consider but approaches it
for large w). The nodes of this type, then, will be the hopeful nodes – and these are the nodes which may
initiate firewalls. Similarly, we replace the notion of an α-stable structure, with that of an α-intractable
structure:

Definition 3.1 (Intractable structures) We say that a set of nodes A is an α-intractable structure
if it contains β nodes, and for every β node u ∈ A, u would be unhappy (as an α node) if all nodes in
Ā ∪ {u} were changed to type α.

So the point is that if a β node belongs to an α-intractable structure in the initial configuration then it
can never change type.

The proof of Theorem 1.2 (e)

The proof goes through word for word the same as that of Theorem 1.2 (a), if one replaces τα, τβ
everywhere with 1 − τα and 1 − τβ and if one replaces ‘α-stable’ or ‘β-stable’ with ‘β-intractable’ or
‘α-intractable’.
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The proof of Theorem 1.2 (d)

We define various events, which take the place of pnαγ,τα(u), uhβτβ (u), ruhατ (u) and rjuατ (u) in the proof

of Theorem 1.2 (b).

– Consider the initial configuration. If u is a β node, we let pnα
γ,τα

(u) be the event that there exists

some γ-partial neighbourhood of u, A say, such that u would be unhappy (as a node of type α) if
all nodes in Ā∪ {u} were changed to type α. Note that, roughly, this corresponds to A containing at
least (1− τα)(2w + 1)2 many nodes of type β. We also let pnα

γ,τα
(u)[s] be the corresponding event for

the end of stage s, rather than the initial configuration.

– We say that hβτβ (u) holds if u would be happy in the initial configuration if its type was changed to

β (or remains β if already of this type). Note that roughly this corresponds to N (u) containing at
most (1 − τβ) many nodes of type α. We say that ruhατ (u) holds if N ⋄(u) contains strictly less than
(1 − τ)(2w + 1)(3w + 1) many β nodes. We say that rjuα

τ
(u) holds, if ruhατ (u) holds, but this would

no longer be true if any node of type α in N ⋄(u) changed type.

In what follows we use the notation f(w) ≃ g(w) introduced in the proof of Lemma 2.2. The crucial

observation is that P(pnα
γ,τα

(u)) ≃ P(pnαγ,1−τα
(u)), and P(hβτβ (u)) ≃ P(uhβ1−τβ

(u)), while P(ruhατ (u)) =

P(ruhα1−τ (u)). We therefore have the following analogue of Lemma 2.2:

Lemma 3.2 Suppose that 1−κ > τα > 0.5 and τβ ⊲ τα. Choose τ such that τβ ⊲ τ > τα and 1−κ > τ .
Then there exists γ > 1

2 and ζ > 1 such that for 0 ≪ w ≪ n, and for a node u selected uniformly at
random, P(ruhατ (u)) > ζw ·P(pnα

γ,τα
(u)) and P(ruhατ (u)) > ζw ·P(hβτβ (u)).

With Lemma 3.2 in place, the remainder of the proof then goes through almost identically to that for
Theorem 1.2 (b), with (for the new values τα, τβ satisfying the conditions in the statement of Theorem
1.2 (d), and for τ chosen as in Lemma 3.2), pnα

γ,τα
(u), hβτβ (u), ruhατ (u) and rjuα

τ
(u) taking the place of

pnαγ,1−τα
(u), uhβ1−τβ

(u), ruhα1−τ (u) and rjuα1−τ (u) respectively. Now, however, we look to show that u0

which is chosen uniformly at random, will very probably eventually be of type α.

So we choose r∗ satisfying (†a) and (†b) of Section 1.5 and observe, in a manner entirely analogous to
what took place before, that if r ≥ r∗ then for 0 ≪ w ≪ n, any β node v on the outer boundary of a
α-firewall of radius rw at stage s will be hopeful, so long as pnα

γ,τα
(v)[s] does not hold. Then we define

Q0 and Q as before, but using π(w) which is now defined in terms of P(ruhατ (u)). Our new version of
Typical vicinity holds iff:

1. ruhατ (u0) does not hold;

2. There exists u ∈ Q0 such that ruhατ (u) holds;

3. There does not exist any u in Q such that either of pnα
γ,τα

(u) or hβτβ (u) hold.

As before, we may conclude that if 0 ≪ w ≪ n then (our new version of) Typical vicinity fails to
hold with probability ≪ ǫ0. In our new version of Definition 2.6, we replace “type α” with “type β”.
In Definition 2.9 we again replace “type α” with “type β” and vice versa, and we replace τ with 1 − τ ,
so that these functions now detail the proportion of nodes of type β (rather than α as previously was
the case). In Definition 2.12 and Lemma 2.13 we replace τ and τα with 1 − τ and 1 − τα respectively
and we exchange “type α” everywhere for “type β”, and vice versa. Then the proof of our new version
of Lemma 2.13 goes through as before, except that now we are inductively able to argue that all nodes
in the relevant sets Ri

j are eventually of type α, and that C0(u) will eventually be a firewall of type α.
Finally, using the same argument as in the proof of Lemma 2.16 but using our new values of Q0, m0 and
so on, and replacing β with α, we conclude that if Typical vicinity and Smooth(k1, ǫ1) both hold then
there exists a stage after which u0 is always of type α.
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4 Modifying the proofs for the three dimensional model

First note that Theorems 1.3 (a) and 1.3 (c) can be proved exactly as in the two dimensional case, if we
simply modify all of the two dimensional notions to their three dimensional counterparts in the obvious
way. Circles are replaced by spheres and rectangles by three dimensional blocks. We also extend the
notation A† to three dimensional space in the obvious way. Then Theorems 1.3 (d) and 1.3 (e) will once
again follow by the same symmetry considerations that we applied previously in Section 3, once Theorem
1.3 (b) is established. Once again then, the bulk of the work is in establishing Theorem 1.3 (b).

To establish Theorem 1.3 (b), we can apply almost exactly the same proof as in the two dimensional
case. In that previous case, however, we worked quite hard in order to give a low value for κ, resulting
in a slightly fiddly argument for the proof of Lemma 2.13, which does not obviously extend to three
dimensional space. For the three dimensional model, we shall be a little lazy and shall work with an
analogue of the event ruhατ (u) which gives a value for κ∗ which could easily be improved upon, but which
allows for a very simple proof in our three dimensional counterpart to Lemma 2.13.

We redefine pnαγ,τ (u) and uhατ (u) in the obvious way, and also define our analogue of ruhατ (u) as follows:

– Suppose that P is a plane passing through N †(u). Let A1 be all those points in N †(u) on or above

P , and let A2 be all those points in N †(u) on or below P . If µ(A†
i ) = γ(2w + 1)3, then we call Ai a

γ-partial neighbourhood of u, with defining plane P . If u is an α node, we let pnαγ,τ (u) be the event

that there exists some γ-partial neighbourhood of u which contains at least τ(2w+ 1)3 many α nodes
in the initial configuration (and similarly for β).

– We say that uhατ (u) holds if there are strictly less than τ(2w + 1)3 many α nodes in N (u) in the
initial configuration. If u = (x, y, z) then the extended neighbourhood of u is the set of nodes (x′, y′, z′)
such that |x − x′|, |y − y′||z − z′| ≤ ⌈ 3

2w⌉. We say that euhατ (u) holds if there are strictly less than
τ(3w + 1)3 many α nodes in the extended neighbourhood of u in the initial configuration.

Arguing almost exactly as in the proof of Lemma 2.2, we then obtain the following three dimensional
analogue:

Lemma 4.1 Suppose that κ∗ < τα < 0.5 and τβ 2 τα. Choose τ such that τβ 2 τ < τα and κ∗ < τ . Then
there exists γ > 1

2 and ζ > 1 such that for 0 ≪ w ≪ n, and for a node u selected uniformly at random,
P(euhατ (u)) > ζw ·P(pnαγ,τα(u)) and P(euhατ (u)) > ζw ·P(uhβτβ (u)).

The only significant task in modifying the proof to work in three dimensions is then in forming the
analogue of Lemma 2.13, which is now much easier. We define ejuατ (u) in terms of euhατ (u), just as
rjuατ (u) was defined in terms of ruhατ (u), i.e. ejuατ ′(u) holds if there are less than τ ′(3w + 1)3 many α
nodes in the extended neighbourhood of u, but changing the type of (3w + 1)2 β nodes in this extended
neighbourhood would cause this not to be the case. Rather than inductively building a sequence of larger
and larger rectangles for which all nodes will become of type β, we simply observe that satisfaction of
ejuατ (u) and (the three dimensional analogue of) Smoothk1,ǫ1(u) for appropriately large k1 and small ǫ1,
suffices to ensure that all α nodes in a cube centred at u with sides of length w, are unhappy in the initial
configuration. In particular this certainly implies that all nodes in the interior of a sphere of diameter
w centred at u will be of type β by the end of stage 1. Now satisfaction of Smoothk1,ǫ1(u) suffices to
ensure that all α nodes on the outer boundary of this sphere are hopeful at the end of stage 1, and it
then follows that this sphere of β nodes will grow at subsequent stages as required.

5 Deferred proofs

5.1 The proof of Lemma 2.2

We previously defined γ-partial neighbourhoods and right-extended neighbourhoods. It will be useful to
consider also some related notions:



Unperturbed Schelling segregation in two or three dimensions 21

Fig. 7 Lower, rotated lower and γ-partial neighbourhoods respectively.

– By the lower neighbourhood of a node u = (x, y), denoted ln(u), we mean the set of nodes {(x′, y′) ∈
N (u) : y′ < y or (y′ = y & x′ ≤ x)}. If u is an α node and τ ∈ [0, 1], we let lnατ (u) be the event that
ln(u) contains at least τ(2w + 1)2 many α nodes in the initial configuration. So lnατα(u) is the event
that the lower neighbourhood already has enough α nodes to ensure that u is happy. We let lnβτ (u)
denote the corresponding event when α is replaced everywhere by β.6

– Suppose that ℓ is any straight line passing through u. Let A1 be all those nodes in N (u) strictly below
ℓ, and let A2 be all those nodes in N (u) strictly above ℓ. Suppose that ℓ intersects the boundary of
N †(u) at x1 and x2 (ordered arbitrarily). Let ℓi be the (closed) straight line segment between xi and
u. If L ⊂ N (u) is such that there exist i, j ∈ {0, 1}, L = Ai ∪ (ℓj ∩ N (u)) then we call L a rotated
lower neighbourhood of u, with defining line ℓ. If u is an α node and τ ∈ [0, 1], we let rnατ (u) be the
event that there exists some rotated lower neighbourhood of u which contains at least τ(2w + 1)2

many α nodes in the initial configuration (and similarly for β).

So the various neighbourhoods with which we are concerned are really very simple, and are depicted in
Figure 7. The lower neighbourhood is (roughly) just the bottom half of the neighbourhood, while the
rotated lower neighbourhood is just a rotation of this. Recall that a γ-partial neighbourhood of u is
just a subset of N (u) defined by a straight line, and which has measure γ(2w + 1)2. The right extended
neighbourhood results roughly from tacking on an extra half of N (u) to the right.

We prove the following for u chosen uniformly at random:

1. τ > κ implies that there exists ζ > 1 such that for 0 ≪ w ≪ n, P(ruhατ (u)) > ζw ·P(lnατ (u)).

2. τβ ⊳ τ implies that there exists ζ > 1 such that for 0 ≪ w ≪ n, P(ruhατ (u)) > ζw ·P(uhβτβ (u)).

3. τα > τ implies that there exists γ > 1
2 such that for 0 ≪ w ≪ n, P(lnατ (u)) > P(pnαγ,τα(u)).

With these facts established, (1) and (3) combined then suffice to show that, for the ζ guaranteed by (1),
there exists γ > 1

2 such that for 0 ≪ w ≪ n, P(ruhατ (u)) > ζw ·P(pnαγ,τα(u)).

First of all we note some basic facts about the binomial distribution. Define b(N, k) = 2−N
(

N
k

)

, b(N,≤
k) =

∑

k′≤k b(N, k′) and b(N,≥ k) =
∑

k′≥k b(N, k′). For the duration of this proof, we shall write
f(N) ≃ g(N) in order to indicate that there exist polynomials P and Q such that f(N) · P (N) > g(N)
and g(N) · Q(N) > f(N) for all N . We also write f(N) % g(N) to indicate that there exists f ′ such
that f(N) ≥ f ′(N) for all N and f ′(N) ≃ g(N). Now it follows, by direct inspection and from standard
bounds on the tail of the binomial distribution (see for example Theorem 1.1. of [5]) that the following
hold for fixed 0 < τ1 < 0.5 < τ2 < 1 and for all integers c, d ∈ [−2, 2]:

(U1) b(N,≤ ⌊τ1N⌋) ≃ b(N + c,≤ ⌊τ1N⌋ + d) ≃ b(N, ⌊τ1N⌋) ≃ b(N + c, ⌊τ1N⌋ + d);

(U2) b(N,≥ ⌊τ2N⌋) ≃ b(N + c,≥ ⌊τ2N⌋ + d) ≃ b(N, ⌊τ2N⌋) ≃ b(N + c, ⌊τ2N⌋ + d).

Now put N = 2w(w+1), so that (2w+1)2 = 2N +1. For τα, τ and τβ in the range given by the conditions
of the lemma, it follows from (U1) and (U2) that:

(U3) P(ruhατ (u)) % b(3N, ⌈3τN⌉), P(lnατ (u)) ≃ b(N, ⌈2τN⌉) and P(uhβτβ (u)) ≃ b(2N, ⌊τβ2N⌋).

6 One should think of ln as (standing for) l-ower n-eighbourhood, and rn as r-otated n-eighbourhood.
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Proving (1)

From (U3) we get that P(ruhατ (u))/P(lnατ (u))) % b(3N, ⌈3τN⌉)/b(N, ⌈2τN⌉). Applying Stirling’s ap-
proximation, we see that the powers of e cancel and:

P(ruhατ (u))/P(lnατ (u))) %
2N (3N)3N+0.5(2τN)2τN+0.5(N(1 − 2τ))N(1−2τ)+0.5

23N (3Nτ)3Nτ+0.5(3N(1 − τ))3N(1−τ)+0.5NN+0.5
.

Simplifying this we get:

(U4) P(ruhατ (u))/P(lnατ (u)) %
(

(1−2τ)1−2τ+1/(2N)

22−2τ−1/(2N)ττ (1−τ)3(1−τ)+1/(2N)

)N

.

Now since τ > κ we have (1 − 2τ)1−2τ > 22(1−τ)τ τ (1 − τ)3(1−τ). Thus there exists ζ > 1 so that for all
sufficiently large N the term inside the brackets in (U4) is > ζ, giving the result.

Proving (2)

From (U3) we get that P(ruhατ (u))/P(uhβτβ (u)) % b(3N, ⌈3τN⌉)/b(2N, ⌊τβ2N⌋). Applying Stirling’s
approximation, and simplifying as before we get:

(U5) P(ruhατ (u))/P(uhβτβ (u)) %

(

τ
2τβ+1/(2N)

β (1−τβ)
2(1−τβ)+1/(2N)

21−1/(2N)τ3τ+1/(2N)(1−τ)3(1−τ)+1/(2N)

)N

.

Now since τβ ⊳ τ we have that τ
2τβ
β (1 − τβ)2(1−τβ) > 2τ3τ (1 − τ)3(1−τ). Thus there exists ζ > 1 so that

for all sufficiently large N the term inside the brackets in (U5) is > ζ, giving the result.

Proving (3)

Choose τ ′ with τ < τ ′ < τα. Note first that there exists ζ > 1 such that for 0 ≪ w ≪ n, P(lnατ (u)) >
ζw ·P(lnατ ′(u)). We then look to show that P(rnατ ′(u)) is at most 2(2w+ 1)2 ·P(lnατ ′(u)) – meaning that
once again there exists ζ > 1 such that for 0 ≪ w ≪ n, P(lnατ (u)) > ζw ·P(rnατ ′(u)). In order to see this,
observe first that each rotated lower neighbourhood of u contains precisely the same number of nodes,
and so is precisely as likely to contain τ ′(2w + 1)2 many nodes of type α. As the defining line ℓ rotates
through an angle of 2π, each node leaves the corresponding rotated lower neighbourhood precisely once
and also joins precisely once. Thus there are at most 2(2w + 1)2 distinct rotated lower neighbourhoods
of u and the probability that at least one of them contains at least τ ′(2w + 1)2 many nodes of type α is
at most 2(2w + 1)2 times the probability that a given one does. Finally we show that, for an appropriate
choice of γ > 1

2 , there exists a constant c such that P(pnαγ,τα(u)) < c ·P(rnατ ′(u)). So define:

γ =
τα + τ ′

4τ ′
.

Suppose we are given that pnαγ,τα(u) holds. Given A which is a γ-partial neighbourhood of u containing at

least τα(2w + 1)2 many nodes of type α, with defining line ℓ say, consider a rotated lower neighbourhood
of u which is a subset of A, with defining line parallel to ℓ. Call this rotated lower neighbourhood A0.
Let z0 be the expected number of α nodes in A0 (given the stated conditions on A), and let z1 be the
actual number of α nodes in A0. As w → ∞:

z0/(2w + 1)2 → z∗ :=
2τ ′τα

(τα + τ ′)
,

and for any ǫ > 0, the probability that |z1/(2w + 1)2 − z∗| > ǫ tends to 0. The result follows since
(2τα)/((τα + τ ′)) > 1.
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5.2 The proof of Lemma 2.7

If θ(w) is the proportion of the nodes in N ⋄(u) which are of type α when rjuατ (u) holds, then θ(w) → τ
as w → ∞. Since we consider k1 and ǫ1 fixed it suffices to show that for any ǫ > 0 and for a given
A ∈ Ik1(u) the following occurs with probability > 1 − ǫ for 0 ≪ w ≪ n:

1. If A ⊂ N ⋄(u) then the proportion of the nodes in A which are of type α is in the interval [τ−ǫ1, τ+ǫ1].

2. If A is disjoint from N ⋄(u) then the proportion of the nodes in A which is of type α is in the interval
[0.5 − ǫ1, 0.5 + ǫ1].

Now (2) follows simply from the weak law of large numbers. Also, (1) follows from Chebyshev’s inequality
and standard results for the variance of a hypergeometric distribution. If φ is the proportion of the nodes
in A which are of type α then:

P(|φ− θ(w)| > ǫ1/2) < |A|−2(ǫ1/2)−2Var(θ) = O(1)|A|−1.
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