1,009 research outputs found

    Primordial Black Holes, Eternal Inflation, and the Inflationary Parameter Space after WMAP5

    Full text link
    We consider constraints on inflation driven by a single, minimally coupled scalar field in the light of the WMAP5 dataset, as well as ACBAR and the SuperNova Legacy Survey. We use the Slow Roll Reconstruction algorithm to derive optimal constraints on the inflationary parameter space. The scale dependence in the slope of the scalar spectrum permitted by WMAP5 is large enough to lead to viable models where the small scale perturbations have a substantial amplitude when extrapolated to the end of inflation. We find that excluding parameter values which would cause the overproduction of primordial black holes or even the onset of eternal inflation leads to potentially significant constraints on the slow roll parameters. Finally, we present a more sophisticated approach to including priors based on the total duration of inflation, and discuss the resulting restrictions on the inflationary parameter space.Comment: v2: version published in JCAP. Minor clarifications and references adde

    New Solutions of the Inflationary Flow Equations

    Full text link
    The inflationary flow equations are a frequently used method of surveying the space of inflationary models. In these applications the infinite hierarchy of differential equations is truncated in a way which has been shown to be equivalent to restricting the set of models considered to those characterized by polynomial inflaton potentials. This paper explores a different method of solving the flow equations, which does not truncate the hierarchy and in consequence covers a much wider class of models while retaining the practical usability of the standard approach.Comment: References added, and a couple of comment

    Cascading on extragalactic background light

    Full text link
    High-energy gamma-rays propagating in the intergalactic medium can interact with background infrared photons to produce e+e- pairs, resulting in the absorption of the intrinsic gamma-ray spectrum. TeV observations of the distant blazar 1ES 1101-232 were thus recently used to put an upper limit on the infrared extragalactic background light density. The created pairs can upscatter background photons to high energies, which in turn may pair produce, thereby initiating a cascade. The pairs diffuse on the extragalactic magnetic field (EMF) and cascade emission has been suggested as a means for measuring its intensity. Limits on the IR background and EMF are reconsidered taking into account cascade emissions. The cascade equations are solved numerically. Assuming a power-law intrinsic spectrum, the observed 100 MeV - 100 TeV spectrum is found as a function of the intrinsic spectral index and the intensity of the EMF. Cascades emit mainly at or below 100 GeV. The observed TeV spectrum appears softer than for pure absorption when cascade emission is taken into account. The upper limit on the IR photon background is found to be robust. Inversely, the intrinsic spectra needed to fit the TeV data are uncomfortably hard when cascade emission makes a significant contribution to the observed spectrum. An EMF intensity around 1e-8 nG leads to a characteristic spectral hump in the GLAST band. Higher EMF intensities divert the pairs away from the line-of-sight and the cascade contribution to the spectrum becomes negligible.Comment: 5 pages, to be published as a research note in A&

    Constraining Inflation

    Full text link
    Slow roll reconstruction is derived from the Hamilton-Jacobi formulation of inflationary dynamics. It automatically includes information from sub-leading terms in slow roll, and facilitatesthe inclusion of priors based on the duration on inflation. We show that at low inflationary scales the Hamilton-Jacobi equations simplify considerably. We provide a new classification scheme for inflationary models, based solely on the number of parameters needed to specify the potential, and provide forecasts for likely bounds on the slow roll parameters from future datasets. A minimal running of the spectral index, induced solely by the first two slow roll parameters (\epsilon and \eta) appears to be effectively undetectable by realistic Cosmic Microwave Background experiments. However, we show that the ability to detect this signal increases with the lever arm in comoving wavenumber, and we conjecture that high redshift 21 cm data may allow tests of second order consistency conditions on inflation. Finally, we point out that the second order corrections to the spectral index are correlated with the inflationary scale, and thus the amplitude of the CMB B-mode.Comment: 32 pages. v

    Boundary Effective Field Theory and Trans-Planckian Perturbations: Astrophysical Implications

    Full text link
    We contrast two approaches to calculating trans-Planckian corrections to the inflationary perturbation spectrum: the New Physics Hypersurface [NPH] model, in which modes are normalized when their physical wavelength first exceeds a critical value, and the Boundary Effective Field Theory [BEFT] approach, where the initial conditions for all modes are set at the same time, and modified by higher dimensional operators enumerated via an effective field theory calculation. We show that these two approaches -- as currently implemented -- lead to radically different expectations for the trans-Planckian corrections to the CMB and emphasize that in the BEFT formalism we expect the perturbation spectrum to be dominated by quantum gravity corrections for all scales shorter than some critical value. Conversely, in the NPH case the quantum effects only dominate the longest modes that are typically much larger than the present horizon size. Furthermore, the onset of the breakdown in the standard inflationary perturbation calculation predicted by the BEFT formalism is likely to be associated with a feature in the perturbation spectrum, and we discuss the observational signatures of this feature in both CMB and large scale structure observations. Finally, we discuss possible modifications to both calculational frameworks that would resolve the contradictions identified here.Comment: Reworded commentary, reference added (v2) References added (v3

    WMAP constraint on the P-term inflationary model

    Full text link
    In light of WMAP results, we examine the observational constraint on the P-term inflation. With the tunable parameter ff, P-term inflation contains richer physics than D-term and F-term inflationary models. We find the logarithmic derivative spectral index with n>1n>1 on large scales and n<1n<1 on small scales in agreement to observation. We obtained a reasonable range for the choice of the gauge coupling constant gg in order to meet the requirements of WMAP observation and the expected number of the e-foldings. Although tuning ff and gg we can have larger values for the logarithmic derivative of the spectral index, it is not possible to satisfy all observational requirements for both, the spectral index and its logarithmic derivative at the same time.Comment: 6 pages, double column, 13 figures included. Version appearing in the Physical Review

    Cosmological quantum entanglement

    Get PDF
    We review recent literature on the connection between quantum entanglement and cosmology, with an emphasis on the context of expanding universes. We discuss recent theoretical results reporting on the production of entanglement in quantum fields due to the expansion of the underlying spacetime. We explore how these results are affected by the statistics of the field (bosonic or fermionic), the type of expansion (de Sitter or asymptotically stationary), and the coupling to spacetime curvature (conformal or minimal). We then consider the extraction of entanglement from a quantum field by coupling to local detectors and how this procedure can be used to distinguish curvature from heating by their entanglement signature. We review the role played by quantum fluctuations in the early universe in nucleating the formation of galaxies and other cosmic structures through their conversion into classical density anisotropies during and after inflation. We report on current literature attempting to account for this transition in a rigorous way and discuss the importance of entanglement and decoherence in this process. We conclude with some prospects for further theoretical and experimental research in this area. These include extensions of current theoretical efforts, possible future observational pursuits, and experimental analogues that emulate these cosmic effects in a laboratory setting.Comment: 23 pages, 2 figures. v2 Added journal reference and minor changes to match the published versio

    Constraints on Brane Inflation and Cosmic Strings

    Full text link
    By considering simple, but representative, models of brane inflation from a single brane-antibrane pair in the slow roll regime, we provide constraints on the parameters of the theory imposed by measurements of the CMB anisotropies by WMAP including a cosmic string component. We find that inclusion of the string component is critical in constraining parameters. In the most general model studied, which includes an inflaton mass term, as well as the brane-antibrane attraction, values n_s < 1.02 are compatible with the data at 95 % confidence level. We are also able to constrain the volume of internal manifold (modulo factors dependent on the warp factor) and the value of the inflaton field to be less than 0.66M_P at horizon exit. We also investigate models with a mass term. These observational considerations suggest that such models have r < 2*10^-5, which can only be circumvented in the fast roll regime, or by increasing the number of antibranes. Such a value of r would not be detectable in CMB polarization experiment likely in the near future, but the B-mode signal from the cosmic strings could be detectable. We present forecasts of what a similar analysis using PLANCK data would yield and find that it should be possible to rule out G\mu > 6.5*10^-8 using just the TT, TE and EE power spectra.Comment: 11 pages, 3 figures, revtex4, typos corrected, references adde

    Smooth hybrid inflation in supergravity with a running spectral index and early star formation

    Full text link
    It is shown that in a smooth hybrid inflation model in supergravity adiabatic fluctuations with a running spectral index with \ns >1 on a large scale and \ns <1 on a smaller scale can be naturally generated, as favored by the first-year data of WMAP. It is due to the balance between the nonrenormalizable term in the superpotential and the supergravity effect. However, since smooth hybrid inflation does not last long enough to reproduce the central value of observation, we invoke new inflation after the first inflation. Its initial condition is set dynamically during smooth hybrid inflation and the spectrum of fluctuations generated in this regime can have an appropriate shape to realize early star formation as found by WMAP. Hence two new features of WMAP observations are theoretically explained in a unified manner.Comment: 12 pages, 1 figure, to appear in Phys. Rev.

    How long before the end of inflation were observable perturbations produced?

    Get PDF
    We reconsider the issue of the number of e-foldings before the end of inflation at which observable perturbations were generated. We determine a plausible upper limit on that number for the standard cosmology which is around 60, with the expectation that the actual value will be up to 10 below this. We also note a special property of the λϕ4\lambda \phi^4 model which reduces the uncertainties in that case and favours a higher value, giving a fairly definite prediction of 64 e-foldings for that model. We note an extreme (and highly implausible) situation where the number of e-foldings can be even higher, possibly up to 100, and discuss the shortcomings of quantifying inflation by e-foldings rather than by the change in aHaH. Finally, we discuss the impact of non-standard evolution between the end of inflation and the present, showing that again the expected number of e-foldings can be modified, and in some cases significantly increased.Comment: 7 pages RevTeX4 file with one figure incorporated. Minor updates to match version accepted by Physical Review
    corecore