31 research outputs found

    Mitochondria Express α7 Nicotinic Acetylcholine Receptors to Regulate Ca2+ Accumulation and Cytochrome c Release: Study on Isolated Mitochondria

    Get PDF
    Nicotinic acetylcholine receptors (nAChRs) are ligand-gated ion channels that mediate synaptic transmission in the muscle and autonomic ganglia and regulate transmitter release in the brain. The nAChRs composed of α7 subunits are also expressed in non-excitable cells to regulate cell survival and proliferation. Up to now, functional α7 nAChRs were found exclusively on the cell plasma membrane. Here we show that they are expressed in mitochondria and regulate early pro-apoptotic events like cytochrome c release. The binding of α7-specific antibody with mouse liver mitochondria was revealed by electron microscopy. Outer membranes of mitochondria from the wild-type and β2−/− but not α7−/− mice bound α7 nAChR-specific antibody and toxins: FITC-labeled α-cobratoxin or Alexa 555-labeled α-bungarotoxin. α7 nAChR agonists (1 µM acetylcholine, 10 µM choline or 30 nM PNU-282987) impaired intramitochondrial Ca2+ accumulation and significantly decreased cytochrome c release stimulated with either 90 µM CaCl2 or 0.5 mM H2O2. α7-specific antagonist methyllicaconitine (50 nM) did not affect Ca2+ accumulation in mitochondria but attenuated the effects of agonists on cytochrome c release. Inhibitor of voltage-dependent anion channel (VDAC) 4,4′-diisothio-cyano-2,2′-stilbene disulfonic acid (0.5 µM) decreased cytochrome c release stimulated with apoptogens similarly to α7 nAChR agonists, and VDAC was co-captured with the α7 nAChR from mitochondria outer membrane preparation in both direct and reverse sandwich ELISA. It is concluded that α7 nAChRs are expressed in mitochondria outer membrane to regulate the VDAC-mediated Ca2+ transport and mitochondrial permeability transition

    Bats, Bat Flies, and Fungi: Exploring Uncharted Waters

    Get PDF
    Bats serve as hosts to many lineages of arthropods, of which the blood-sucking bat flies (Nycteribiidae and Streblidae) are the most conspicuous. Bat flies can in turn be parasitized by Laboulbeniales fungi, which are biotrophs of arthropods. This is a second level of parasitism, hyperparasitism, a severely understudied phenomenon. Four genera of Laboulbeniales are known to occur on bat flies, Arthrorhynchus on Nycteribiidae in the Eastern Hemisphere, Dimeromyces on Old World Streblidae, Gloeandromyces on New World Streblidae, and Nycteromyces on Streblidae in both hemispheres. In this chapter, we introduce the different partners of the tripartite interaction and discuss their species diversity, ecology, and patterns of specificity. We cover parasite prevalence of Laboulbeniales fungi on bat flies, climatic effects on parasitism of bat flies, and coevolutionary patterns. One of the most important questions in this tripartite system is whether habitat has an influence on parasitism of bat flies by Laboulbeniales fungi. We hypothesize that habitat disturbance causes parasite prevalence to increase, in line with the “dilution effect.” This can only be resolved based on large, non-biased datasets. To obtain these, we stress the importance of multitrophic field expeditions and international collaborations

    Pharmacognostical Sources of Popular Medicine To Treat Alzheimer’s Disease

    Get PDF

    Host-switching events are not always the driver of speciation in social parasites: a case study in Temnothorax (Myrmoxenus) ants (Hymenoptera, Formicidae)

    Get PDF
    Abstract Host?parasite systems, including social parasites that exploit resources of the host colonies, are fascinating objects for evolutionary biologists mainly due to the dynamic and often rapid host?parasite coevolution. Host-switching events are believed to induce rapid speciation of parasitic species. The socially parasitic ant lineage Myrmoxenus, which corresponds to the monophyletic Temnothorax corsicus group, counts in total a dozen species. Most Myrmoxenus species utilize a single host species, but a few others, like Myrmoxenus ravouxi (André, 1896) and M.?gordiagini Ruzsky, 1902, are known to use multiple host taxa. Myrmoxenus zaleskyi (Sadil, 1953) was described as a putative congener of M.?ravouxi based on its distinct host selection. In this paper, we investigate the diversity of the widely distributed European lineages M.?ravouxi and M.?zaleskyi from multiple and complementary perspectives to understand whether the host preference exhibited by these two forms implies speciation. We integrated evidence from molecular genetics using mitochondrial CO I/CO II genes, including the tLeu-region, and multivariate analyses of morphometric data collected from workers and female sexuals (gynes). Although there is substantial regional host species specificity, results suggest that host switching did not result in phylogenetic or morphological divergence and that the central European M.?zaleskyi can be considered the junior synonym of M.?ravouxi. As the lineage Myrmoxenus has been the subject of considerable evolutionary research, these results are essential to achieve a more accurate picture of host?parasite systems in the future and further strengthen the justification of an integrative approach in studying similarly complex systems. We advise against describing new parasitic species based on host preference unless coupled with marked heritable phenotypic adaptations
    corecore