5,593 research outputs found

    A Possible Aoki Phase for Staggered Fermions

    Full text link
    The phase diagram for staggered fermions is discussed in the context of the staggered chiral Lagrangian, extending previous work on the subject. When the discretization errors are significant, there may be an Aoki-like phase for staggered fermions, where the remnant SO(4) taste symmetry is broken down to SO(3). We solve explicitly for the mass spectrum in the 3-flavor degenerate mass case and discuss qualitatively the 2+1-flavor case. From numerical results we find that current simulations are outside the staggered Aoki phase. As for near-future simulations with more improved versions of the staggered action, it seems unlikely that these will be in the Aoki phase for any realistic value of the quark mass, although the evidence is not conclusive.Comment: 27 pages, 8 figures, uses RevTe

    Prise en charge des syndromes dysexécutifs

    Get PDF

    Field Induced Nodal Order Parameter in the Tunneling Spectrum of YBa2_2Cu3_3O7x_{7-x} Superconductor

    Full text link
    We report planar tunneling measurements on thin films of YBa2_2Cu3_3O7x_{7-x} at various doping levels under magnetic fields. By choosing a special setup configuration, we have probed a field induced energy scale that dominates in the vicinity of a node of the d-wave superconducting order parameter. We found a high doping sensitivity for this energy scale. At Optimum doping this energy scale is in agreement with an induced idxyid_{xy} order parameter. We found that it can be followed down to low fields at optimum doping, but not away from it.Comment: 9 pages, 8 figures, accepted for publication in Phys. Rev.

    Approach of a class of discontinuous dynamical systems of fractional order: existence of the solutions

    Full text link
    In this letter we are concerned with the possibility to approach the existence of solutions to a class of discontinuous dynamical systems of fractional order. In this purpose, the underlying initial value problem is transformed into a fractional set-valued problem. Next, the Cellina's Theorem is applied leading to a single-valued continuous initial value problem of fractional order. The existence of solutions is assured by a P\'{e}ano like theorem for ordinary differential equations of fractional order.Comment: accepted IJBC, 5 pages, 1 figur

    Research of metal solidification in zero-g state

    Get PDF
    An experiment test apparatus that allows metal melting and resolidification in the three seconds available during free fall in a drop tower was built and tested in the tower. Droplets (approximately 0.05 cm) of pure nickel and 1090 steel were prepared in this fashion. The apparatus, including instrumentation, is described. As part of the instrumentation, a method for measuring temperature-time histories of the free floating metal droplets was developed. Finally, a metallurgical analysis of the specimens prepared in the apparatus is presented

    Infrared and ultraviolet properties of the Landau gauge quark propagator

    Full text link
    We present a current summary of a program to study the quark propagator using lattice QCD. We use the Overlap and ``Asqtad'' quark actions on a number of lattice ensembles to assess systematic errors. We comment on the place of this work amongst studies of QCD Green's functions in other formulations. A preliminary calculation of the running quark mass is presented.Comment: 7 pages, Contribution to LHP03, Cairn

    Convergence of resonances on thin branched quantum wave guides

    Full text link
    We prove an abstract criterion stating resolvent convergence in the case of operators acting in different Hilbert spaces. This result is then applied to the case of Laplacians on a family X_\eps of branched quantum waveguides. Combining it with an exterior complex scaling we show, in particular, that the resonances on X_\eps approximate those of the Laplacian with ``free'' boundary conditions on X0X_0, the skeleton graph of X_\eps.Comment: 48 pages, 1 figur

    Quantum tunneling in a three dimensional network of exchange coupled single-molecule magnets

    Full text link
    A Mn4 single-molecule magnet (SMM) is used to show that quantum tunneling of magnetization (QTM) is not suppressed by moderate three dimensional exchange coupling between molecules. Instead, it leads to an exchange bias of the quantum resonances which allows precise measurements of the effective exchange coupling that is mainly due to weak intermolecular hydrogen bounds. The magnetization versus applied field was recorded on single crystals of [Mn4]2 using an array of micro-SQUIDs. The step fine structure was studied via minor hysteresis loops.Comment: 4 pages, 4 figure
    corecore