1,969 research outputs found
Differential rotation decay in the radiative envelopes of CP stars
Stars of spectral classes A and late B are almost entirely radiative. CP
stars are a slowly rotating subgroup of these stars. It is possible that they
possessed long-lived accretion disks in their T Tauri phase. Magnetic coupling
of disk and star leads to rotational braking at the surface of the star.
Microscopic viscosities are extremely small and will not be able to reduce the
rotation rate of the core of the star. We investigate the question whether
magneto-rotational instability can provide turbulent angular momentum
transport. We illuminate the question whether or not differential rotation is
present in CP stars. Numerical MHD simulations of thick stellar shells are
performed. An initial differential rotation law is subject to the influence of
a magnetic field. The configuration gives indeed rise to magneto-rotational
instability. The emerging flows and magnetic fields transport efficiently
angular momentum outwards. Weak dependence on the magnetic Prandtl number
(~0.01 in stars) is found from the simulations. Since the estimated time-scale
of decay of differential rotation is 10^7-10^8 yr and comparable to the
life-time of A stars, we find the braking of the core to be an ongoing process
in many CP stars. The evolution of the surface rotation of CP stars with age
will be an observational challenge and of much value for verifying the
simulations.Comment: 8 pages, 11 figures; submitted to Astron. & Astrophy
Inconsistency of the Wolf sunspot number series around 1848
Aims. Sunspot number is a benchmark series in many studies, but may still
contain inhomogeneities and inconsistencies. In particular, an essential
discrepancy exists between the two main sunspot number series, Wolf (WSN) and
group (GSN) sunspot numbers, before 1848. The source of this discrepancy has so
far remained unresolved. However, the recently digitized series of solar
observations in 1825-1867 by Samuel Heinrich Schwabe, who was the primary
observer of the WSN before 1848, makes such an assessment possible. Methods. We
construct sunspot series, similar to WSN and GSN, but using only Schwabe's
data. These series, called WSN-S and GSN-S, respectively, were compared with
the original WSN and GSN series for the period 1835-1867 to look for possible
inhomogeneities. Results. We show that: (1) The GSN series is homogeneous and
consistent with the Schwabe data throughout the entire studied period; (2) The
WSN series decreases by roughly ~20% around 1848 caused by the change of the
primary observer from Schwabe to Wolf and an inappropriate individual
correction factor used for Schwabe in the WSN; (3) This implies a major
inhomogeneity in the WSN, which needs to be corrected by reducing its values by
20% before 1848; (4) The corrected WSN series is in good agreement with the GSN
series. This study supports the earlier conclusions that the GSN series is more
consistent and homogeneous in the earlier part than the WSN series.Comment: Published as: Leussu, R., I.G. Usoskin, R. Arlt and K. Mursula,
Inconsistency of the Wolf sunspot number series around 1848, Astron.
Astrophys., 559, A28, 201
3D simulations of rising magnetic flux tubes in a compressible rotating interior: The effect of magnetic tension
Context: Long-term variability in solar cycles represents a challenging
constraint for theoretical models. Mean-field Babcock-Leighton dynamos that
consider non-instantaneous rising flux tubes have been shown to exhibit
long-term variability in their magnetic cycle. However a relation that
parameterizes the rise-time of non-axisymmetric magnetic flux tubes in terms of
stellar parameters is still missing. Aims: We aim to find a general
parameterization of the rise-time of magnetic flux tubes for solar-like stars.
Methods: By considering the influence of magnetic tension on the rise of
non-axisymmetric flux tubes, we predict the existence of a control parameter
referred as . This parameter is a measure of the
balance between rotational effects and magnetic effects (buoyancy and tension)
acting on the magnetic flux tube. We carry out two series of numerical
experiments (one for axisymmetric rise and one for non-axisymmetric rise) and
demonstrate that indeed controls the rise-time
of magnetic flux tubes. Results: We find that the rise-time follows a power law
of with an exponent that depends on the
azimuthal wavenumber of the magnetic flux loop. Conclusions: Compressibility
does not impact the rise of magnetic flux tubes, while non-axisymmetry does. In
the case of non-axisymmetric rise, the tension force modifies the force balance
acting on the magnetic flux tube. We identified the three independent
parameters required to predict the rise-time of magnetic flux tubes, that is,
the stellar rotation rate, the magnetic flux density of the flux tube, and its
azimuthal wavenumber. We combined these into one single relation that is valid
for any solar-like star. We suggest using this generalized relation to
constrain the rise-time of magnetic flux tubes in Babcock-Leighton dynamo
models.Comment: 18 pages, 15 figures, 6 tabula
Importance of second-order piezoelectric effects in zincblende semiconductors
We show that the piezoelectric effect that describes the emergence of an
electric field in response to a crystal deformation in III-V semiconductors
such as GaAs and InAs has strong contributions from second-order effects that
have been neglected so far. We calculate the second-order piezoelectric tensors
using density functional theory and obtain the piezoelectric field for
[111]-oriented InGaAs quantum wells of realistic dimensions and
concentration . We find that the linear and the quadratic piezoelectric
coefficients have the opposite effect on the field, and for large strains the
quadratic terms even dominate. Thus, the piezoelectric field turns out to be a
rare example of a physical quantity for which the first- and second-order
contributions are of comparable magnitude.Comment: 4 pages, 3 figures, Submitted to Phys. Rev. Let
Three-dimensional stability of the solar tachocline
The three-dimensional, hydrodynamic stability of the solar tachocline is
investigated based on a rotation profile as a function of both latitude and
radius. By varying the amplitude of the latitudinal differential rotation, we
find linear stability limits at various Reynolds numbers by numerical
computations. We repeated the computations with different latitudinal and
radial dependences of the angular velocity. The stability limits are all higher
than those previously found from two-dimensional approximations and higher than
the shear expected in the Sun. It is concluded that any part of the tachocline
which is radiative is hydrodynamically stable against small perturbations.Comment: 6 pages, 8 figures, accepted by Astron. & Astrophy
A solar cycle lost in 1793--1800: Early sunspot observations resolve the old mystery
Because of the lack of reliable sunspot observation, the quality of sunspot
number series is poor in the late 18th century, leading to the abnormally long
solar cycle (1784--1799) before the Dalton minimum. Using the newly recovered
solar drawings by the 18--19th century observers Staudacher and Hamilton, we
construct the solar butterfly diagram, i.e. the latitudinal distribution of
sunspots in the 1790's. The sudden, systematic occurrence of sunspots at high
solar latitudes in 1793--1796 unambiguously shows that a new cycle started in
1793, which was lost in traditional Wolf's sunspot series. This finally
confirms the existence of the lost cycle that has been proposed earlier, thus
resolving an old mystery. This letter brings the attention of the scientific
community to the need of revising the sunspot series in the 18th century. The
presence of a new short, asymmetric cycle implies changes and constraints to
sunspot cycle statistics, solar activity predictions, solar dynamo theories as
well as for solar-terrestrial relations.Comment: Published by Astrophys. J. Let
Width of Sunspot Generating Zone and Reconstruction of Butterfly Diagram
Based on the extended Greenwich-NOAA/USAF catalogue of sunspot groups it is
demonstrated that the parameters describing the latitudinal width of the
sunspot generating zone (SGZ) are closely related to the current level of solar
activity, and the growth of the activity leads to the expansion of SGZ. The
ratio of the sunspot number to the width of SGZ shows saturation at a certain
level of the sunspot number, and above this level the increase of the activity
takes place mostly due to the expansion of SGZ. It is shown that the mean
latitudes of sunspots can be reconstructed from the amplitudes of solar
activity. Using the obtained relations and the group sunspot numbers by Hoyt
and Schatten (1998), the latitude distribution of sunspot groups ("the Maunder
butterfly diagram") for the 18th and the first half of the 19th centuries is
reconstructed and compared with historical sunspot observations.Comment: 16 pages, 11 figures; accepted by Solar Physics; the final
publication will be available at www.springerlink.co
Extended coherence time on the clock transition of optically trapped Rubidium
Optically trapped ensembles are of crucial importance for frequency
measurements and quantum memories, but generally suffer from strong dephasing
due to inhomogeneous density and light shifts. We demonstrate a drastic
increase of the coherence time to 21 s on the magnetic field insensitive clock
transition of Rb-87 by applying the recently discovered spin self-rephasing.
This result confirms the general nature of this new mechanism and thus shows
its applicability in atom clocks and quantum memories. A systematic
investigation of all relevant frequency shifts and noise contributions yields a
stability of 2.4E-11 x tau^(-1/2), where tau is the integration time in
seconds. Based on a set of technical improvements, the presented frequency
standard is predicted to rival the stability of microwave fountain clocks in a
potentially much more compact setup.Comment: 5 pages, 4 figure
- …
