1,969 research outputs found

    Differential rotation decay in the radiative envelopes of CP stars

    Full text link
    Stars of spectral classes A and late B are almost entirely radiative. CP stars are a slowly rotating subgroup of these stars. It is possible that they possessed long-lived accretion disks in their T Tauri phase. Magnetic coupling of disk and star leads to rotational braking at the surface of the star. Microscopic viscosities are extremely small and will not be able to reduce the rotation rate of the core of the star. We investigate the question whether magneto-rotational instability can provide turbulent angular momentum transport. We illuminate the question whether or not differential rotation is present in CP stars. Numerical MHD simulations of thick stellar shells are performed. An initial differential rotation law is subject to the influence of a magnetic field. The configuration gives indeed rise to magneto-rotational instability. The emerging flows and magnetic fields transport efficiently angular momentum outwards. Weak dependence on the magnetic Prandtl number (~0.01 in stars) is found from the simulations. Since the estimated time-scale of decay of differential rotation is 10^7-10^8 yr and comparable to the life-time of A stars, we find the braking of the core to be an ongoing process in many CP stars. The evolution of the surface rotation of CP stars with age will be an observational challenge and of much value for verifying the simulations.Comment: 8 pages, 11 figures; submitted to Astron. & Astrophy

    Inconsistency of the Wolf sunspot number series around 1848

    Full text link
    Aims. Sunspot number is a benchmark series in many studies, but may still contain inhomogeneities and inconsistencies. In particular, an essential discrepancy exists between the two main sunspot number series, Wolf (WSN) and group (GSN) sunspot numbers, before 1848. The source of this discrepancy has so far remained unresolved. However, the recently digitized series of solar observations in 1825-1867 by Samuel Heinrich Schwabe, who was the primary observer of the WSN before 1848, makes such an assessment possible. Methods. We construct sunspot series, similar to WSN and GSN, but using only Schwabe's data. These series, called WSN-S and GSN-S, respectively, were compared with the original WSN and GSN series for the period 1835-1867 to look for possible inhomogeneities. Results. We show that: (1) The GSN series is homogeneous and consistent with the Schwabe data throughout the entire studied period; (2) The WSN series decreases by roughly ~20% around 1848 caused by the change of the primary observer from Schwabe to Wolf and an inappropriate individual correction factor used for Schwabe in the WSN; (3) This implies a major inhomogeneity in the WSN, which needs to be corrected by reducing its values by 20% before 1848; (4) The corrected WSN series is in good agreement with the GSN series. This study supports the earlier conclusions that the GSN series is more consistent and homogeneous in the earlier part than the WSN series.Comment: Published as: Leussu, R., I.G. Usoskin, R. Arlt and K. Mursula, Inconsistency of the Wolf sunspot number series around 1848, Astron. Astrophys., 559, A28, 201

    3D simulations of rising magnetic flux tubes in a compressible rotating interior: The effect of magnetic tension

    Full text link
    Context: Long-term variability in solar cycles represents a challenging constraint for theoretical models. Mean-field Babcock-Leighton dynamos that consider non-instantaneous rising flux tubes have been shown to exhibit long-term variability in their magnetic cycle. However a relation that parameterizes the rise-time of non-axisymmetric magnetic flux tubes in terms of stellar parameters is still missing. Aims: We aim to find a general parameterization of the rise-time of magnetic flux tubes for solar-like stars. Methods: By considering the influence of magnetic tension on the rise of non-axisymmetric flux tubes, we predict the existence of a control parameter referred as Γα1α2\Gamma_{\alpha_1}^{\alpha_2}. This parameter is a measure of the balance between rotational effects and magnetic effects (buoyancy and tension) acting on the magnetic flux tube. We carry out two series of numerical experiments (one for axisymmetric rise and one for non-axisymmetric rise) and demonstrate that Γα1α2\Gamma_{\alpha_1}^{\alpha_2} indeed controls the rise-time of magnetic flux tubes. Results: We find that the rise-time follows a power law of Γα1α2\Gamma_{\alpha_1}^{\alpha_2} with an exponent that depends on the azimuthal wavenumber of the magnetic flux loop. Conclusions: Compressibility does not impact the rise of magnetic flux tubes, while non-axisymmetry does. In the case of non-axisymmetric rise, the tension force modifies the force balance acting on the magnetic flux tube. We identified the three independent parameters required to predict the rise-time of magnetic flux tubes, that is, the stellar rotation rate, the magnetic flux density of the flux tube, and its azimuthal wavenumber. We combined these into one single relation that is valid for any solar-like star. We suggest using this generalized relation to constrain the rise-time of magnetic flux tubes in Babcock-Leighton dynamo models.Comment: 18 pages, 15 figures, 6 tabula

    Importance of second-order piezoelectric effects in zincblende semiconductors

    Full text link
    We show that the piezoelectric effect that describes the emergence of an electric field in response to a crystal deformation in III-V semiconductors such as GaAs and InAs has strong contributions from second-order effects that have been neglected so far. We calculate the second-order piezoelectric tensors using density functional theory and obtain the piezoelectric field for [111]-oriented Inx_xGa1x_{1-x}As quantum wells of realistic dimensions and concentration xx. We find that the linear and the quadratic piezoelectric coefficients have the opposite effect on the field, and for large strains the quadratic terms even dominate. Thus, the piezoelectric field turns out to be a rare example of a physical quantity for which the first- and second-order contributions are of comparable magnitude.Comment: 4 pages, 3 figures, Submitted to Phys. Rev. Let

    Three-dimensional stability of the solar tachocline

    Full text link
    The three-dimensional, hydrodynamic stability of the solar tachocline is investigated based on a rotation profile as a function of both latitude and radius. By varying the amplitude of the latitudinal differential rotation, we find linear stability limits at various Reynolds numbers by numerical computations. We repeated the computations with different latitudinal and radial dependences of the angular velocity. The stability limits are all higher than those previously found from two-dimensional approximations and higher than the shear expected in the Sun. It is concluded that any part of the tachocline which is radiative is hydrodynamically stable against small perturbations.Comment: 6 pages, 8 figures, accepted by Astron. & Astrophy

    A solar cycle lost in 1793--1800: Early sunspot observations resolve the old mystery

    Full text link
    Because of the lack of reliable sunspot observation, the quality of sunspot number series is poor in the late 18th century, leading to the abnormally long solar cycle (1784--1799) before the Dalton minimum. Using the newly recovered solar drawings by the 18--19th century observers Staudacher and Hamilton, we construct the solar butterfly diagram, i.e. the latitudinal distribution of sunspots in the 1790's. The sudden, systematic occurrence of sunspots at high solar latitudes in 1793--1796 unambiguously shows that a new cycle started in 1793, which was lost in traditional Wolf's sunspot series. This finally confirms the existence of the lost cycle that has been proposed earlier, thus resolving an old mystery. This letter brings the attention of the scientific community to the need of revising the sunspot series in the 18th century. The presence of a new short, asymmetric cycle implies changes and constraints to sunspot cycle statistics, solar activity predictions, solar dynamo theories as well as for solar-terrestrial relations.Comment: Published by Astrophys. J. Let

    Width of Sunspot Generating Zone and Reconstruction of Butterfly Diagram

    Full text link
    Based on the extended Greenwich-NOAA/USAF catalogue of sunspot groups it is demonstrated that the parameters describing the latitudinal width of the sunspot generating zone (SGZ) are closely related to the current level of solar activity, and the growth of the activity leads to the expansion of SGZ. The ratio of the sunspot number to the width of SGZ shows saturation at a certain level of the sunspot number, and above this level the increase of the activity takes place mostly due to the expansion of SGZ. It is shown that the mean latitudes of sunspots can be reconstructed from the amplitudes of solar activity. Using the obtained relations and the group sunspot numbers by Hoyt and Schatten (1998), the latitude distribution of sunspot groups ("the Maunder butterfly diagram") for the 18th and the first half of the 19th centuries is reconstructed and compared with historical sunspot observations.Comment: 16 pages, 11 figures; accepted by Solar Physics; the final publication will be available at www.springerlink.co

    Extended coherence time on the clock transition of optically trapped Rubidium

    Get PDF
    Optically trapped ensembles are of crucial importance for frequency measurements and quantum memories, but generally suffer from strong dephasing due to inhomogeneous density and light shifts. We demonstrate a drastic increase of the coherence time to 21 s on the magnetic field insensitive clock transition of Rb-87 by applying the recently discovered spin self-rephasing. This result confirms the general nature of this new mechanism and thus shows its applicability in atom clocks and quantum memories. A systematic investigation of all relevant frequency shifts and noise contributions yields a stability of 2.4E-11 x tau^(-1/2), where tau is the integration time in seconds. Based on a set of technical improvements, the presented frequency standard is predicted to rival the stability of microwave fountain clocks in a potentially much more compact setup.Comment: 5 pages, 4 figure
    corecore