9,415 research outputs found

    Thermal Radiation from a Fluctuating Event Horizon

    Full text link
    We consider a pointlike two-level system undergoing uniformly accelerated motion. We evaluate the transition probability for a finite time interval of this system coupled to a massless scalar field near a fluctuating event horizon. Horizon fluctuations are modeled using a random noise which generates light-cone fluctuations. We study the case of centered, stationary and Gaussian random processes. The transition probability of the system is obtained from the positive-frequency Wightman function calculated to one loop order in the noise averaging process. Our results show that the fluctuating horizon modifies the thermal radiation but leaves unchanged the temperature associated with the acceleration.Comment: 8 pages, 3 figure

    Correlations and realistic interactions in doubly closed shell nuclei

    Get PDF
    We review the latest variational calculations of the ground state properties of doubly closed shell nuclei, from 12^{12}C to 208^{208}Pb, with semirealistic and realistic two- and three-nucleon interactions. The studies are carried on within the framework of the correlated basis function theory and integral equations technique, with state dependent correlations having central and tensor components. We report results for the ground state energy, one- and two-body densities and static structure functions. For 16^{16}O and 40^{40}Ca we use modern interactions and find that the accuracy of the method is comparable to that attained in nuclear matter with similar hamiltonians, giving nuclei underbound by \sim2 MeV/A. The computed Coulomb sums are in complete agreement with the latest analysis of the experimental data.Comment: 11 Latex pages, 2 ps figures. Talk delivered at the 10th International Conference on Recent Progress In Many-Body Theories, Seattle 1999. To appear in "Advances in Quantum Many-Body Theory", vol.3, World Scientifi

    Boundary effects on radiative processes of two entangled atoms

    Get PDF
    We analyze radiative processes of a quantum system composed by two identical two-level atoms interacting with a massless scalar field prepared in the vacuum state in the presence of perfect reflecting flat mirrors. We consider that the atoms are prepared in a stationary maximally entangled state. We investigate the spontaneous transitions rates from the entangled states to the collective ground state induced by vacuum fluctuations. In the empty-space case, the spontaneous decay rates can be enhanced or inhibited depending on the specific entangled state and changes with the distance between the atoms. Next, we consider the presence of perfect mirrors and impose Dirichlet boundary conditions on such surfaces. In the presence of a single mirror the transition rate for the symmetric state undergoes a slight reduction, whereas for the antisymmetric state our results indicate a slightly enhancement. Finally, we investigate the effect of multiple reflections by two perfect mirrors on the transition rates.Comment: submitted version to the journa

    New Results in the CBF theory for medium-heavy nuclei

    Get PDF
    Momentum distributions, spectroscopic factors and quasi-hole wave functions of medium-heavy doubly closed shell nuclei have been calculated in the framework of the Correlated Basis Function theory, by using the Fermi hypernetted chain resummation techniques. The calculations have been done by using microscopic two-body nucleon-nucleon potentials of Argonne type, together with three-body interactions. Operator dependent correlations, up to the tensor channels, have been used.Comment: 6 pages, 3 figures, proceeding of the "XI Convegno su problemi di Fisica Nucleare Teorica" 11-14 Ottobre 2006, Cortona, Ital

    Entropy involved in fidelity of DNA replication

    Get PDF
    Information has an entropic character which can be analyzed within the Statistical Theory in molecular systems. R. Landauer and C.H. Bennett showed that a logical copy can be carried out in the limit of no dissipation if the computation is performed sufficiently slowly. Structural and recent single-molecule assays have provided dynamic details of polymerase machinery with insight into information processing. We introduce a rigorous characterization of Shannon Information in biomolecular systems and apply it to DNA replication in the limit of no dissipation. Specifically, we devise an equilibrium pathway in DNA replication to determine the entropy generated in copying the information from a DNA template in the absence of friction. Both the initial state, the free nucleotides randomly distributed in certain concentrations, and the final state, a polymerized strand, are mesoscopic equilibrium states for the nucleotide distribution. We use empirical stacking free energies to calculate the probabilities of incorporation of the nucleotides. The copied strand is, to first order of approximation, a state of independent and non-indentically distributed random variables for which the nucleotide that is incorporated by the polymerase at each step is dictated by the template strand, and to second order of approximation, a state of non-uniformly distributed random variables with nearest-neighbor interactions for which the recognition of secondary structure by the polymerase in the resultant double-stranded polymer determines the entropy of the replicated strand. Two incorporation mechanisms arise naturally and their biological meanings are explained. It is known that replication occurs far from equilibrium and therefore the Shannon entropy here derived represents an upper bound for replication to take place. Likewise, this entropy sets a universal lower bound for the copying fidelity in replication.Comment: 25 pages, 5 figure

    Einstein-AdS action, renormalized volume/area and holographic Rényi entropies

    Get PDF
    Indexación: Scopus.The authors thank D.E. Díaz, P. Sundell and A. Waldron for interesting discussions. C.A. is a Universidad Andres Bello (UNAB) Ph.D. Scholarship holder, and his work is supported by Dirección General de Investigación (DGI-UNAB). This work is funded in part by FONDECYT Grants No. 1170765 “Boundary dynamics in anti-de Sitter gravity and gauge/gravity duality ” and No. 3180620 “Entanglement Entropy and AdS gravity ”, and CONICYT Grant DPI 20140115.We exhibit the equivalence between the renormalized volume of asymptotically anti-de Sitter (AAdS) Einstein manifolds in four and six dimensions, and their renormalized Euclidean bulk gravity actions. The action is that of Einstein gravity, where the renormalization is achieved through the addition of a single topological term. We generalize this equivalence, proposing an explicit form for the renormalized volume of higher even-dimensional AAdS Einstein manifolds. We also show that evaluating the renormalized bulk gravity action on the conically singular manifold of the replica trick results in an action principle that corresponds to the renormalized volume of the regular part of the bulk, plus the renormalized area of a codimension-2 cosmic brane whose tension is related to the replica index. Renormalized Rényi entropy of odd-dimensional holographic CFTs can thus be obtained from the renormalized area of the brane with finite tension, including the effects of its backreaction on the bulk geometry. The area computation corresponds to an extremization problem for an enclosing surface that extends to the AdS boundary, where the newly defined renormalized volume is considered. © 2018, The Author(s).https://link.springer.com/article/10.1007%2FJHEP08%282018%2913
    corecore