83 research outputs found

    Dispersive properties of quasi-phase-matched optical parametric amplifiers

    Get PDF
    The dispersive properties of non-degenerate optical parametric amplification in quasi-phase-matched (QPM) nonlinear quadratic crystals with an arbitrary grating profile are theoretically investigated in the no-pump-depletion limit. The spectral group delay curve of the amplifier is shown to be univocally determined by its spectral power gain curve through a Hilbert transform. Such a constraint has important implications on the propagation of spectrally-narrow optical pulses through the amplifier. In particular, it is shown that anomalous transit times, corresponding to superluminal or even negative group velocities, are possible near local minima of the spectral gain curve. A possible experimental observation of such effects using a QPM Lithium-Niobate crystal is suggested.Comment: submitted for publicatio

    Co-axial dual-core resonant leaky fibre for optical amplifiers

    Get PDF
    We present a co-axial dual-core resonant leaky optical fibre design, in which the outer core is made highly leaky. A suitable choice of parameters can enable us to resonantly couple power from the inner core to the outer core. In a large-core fibre, such a resonant coupling can considerably increase the differential leakage loss between the fundamental and the higher order modes and can result in effective single-mode operation. In a small-core single-mode fibre, such a coupling can lead to sharp increase in the wavelength dependent leakage loss near the resonant wavelength and can be utilized for the suppression of amplified spontaneous emission and thereby gain equalization of an optical amplifier. We study the propagation characteristics of the fibre using the transfer matrix method and present an example of each, the large-mode-area design for high power amplifiers and the wavelength tunable leakage loss design for inherent gain equalization of optical amplifiers.Comment: 6 page

    Wave-front engineering by Huygens-Fresnel principle for nonlinear optical interactions in domain engineered structures

    Full text link
    The wave-front engineering for nonlinear optical interactions was discussed. Using Huygens-Fresnel principle we developed a general theory and technique for domain engineering with conventional quasi-phase-matching structures being the special cases. By Fourier analysis we put forward the concept of local quasi-phase matching, which suggests that the quasi-phase matching is fulfilled only locally not globally. Experiments on focal effect of second-harmonic wave agreed well with the theoretical prediction. The proposed scheme combines three optical functions: generation, focusing and beam splitting of second-harmonic wave, thus making the device more compact. Further the proposed scheme can be used to perform the integration of multi-functional optical properties in nonlinear photonics, as well as expand the use of nonlinear optical devices.Comment: 15 pages, 3 figure

    Engineered nonlinear lattices

    Get PDF
    We show that with the quasi-phase-matching technique it is possible to fabricate stripes of nonlinearity that trap and guide light like waveguides. We investigate an array of such stripes and find that when the stripes are sufficiently narrow, the beam dynamics is governed by a quadratic nonlinear discrete equation. The proposed structure therefore provides an experimental setting for exploring discrete effects in a controlled manner. In particular, we show propagation of breathers that are eventually trapped by discreteness. When the stripes are wide the beams evolve in a structure we term a quasilattice, which interpolates between a lattice system and a continuous system.Peer ReviewedPostprint (published version

    Entangled-Photon Generation from Parametric Down-Conversion in Media with Inhomogeneous Nonlinearity

    Full text link
    We develop and experimentally verify a theory of Type-II spontaneous parametric down-conversion (SPDC) in media with inhomogeneous distributions of second-order nonlinearity. As a special case, we explore interference effects from SPDC generated in a cascade of two bulk crystals separated by an air gap. The polarization quantum-interference pattern is found to vary strongly with the spacing between the two crystals. This is found to be a cooperative effect due to two mechanisms: the chromatic dispersion of the medium separating the crystals and spatiotemporal effects which arise from the inclusion of transverse wave vectors. These effects provide two concomitant avenues for controlling the quantum state generated in SPDC. We expect these results to be of interest for the development of quantum technologies and the generation of SPDC in periodically varying nonlinear materials.Comment: submitted to Physical Review

    Intrinsic NLRP3 inflammasome activity is critical for normal adaptive immunity via regulation of IFN-Îł in CD4+ T cells

    Get PDF
    The NLRP3 inflammasome controls interleukin-1b maturation in antigen-presenting cells, but a direct role for NLRP3 in human adaptive immune cells has not been described.We found that the NLRP3 inflammasome assembles in human CD4+ Tcells and initiates caspase-1–dependent interleukin-1b secretion, thereby promoting interferon-g production and T helper 1 (TH1) differentiation in an autocrine fashion. NLRP3 assembly requires intracellular C5 activation and stimulation of C5a receptor 1 (C5aR1), which is negatively regulated by surface-expressed C5aR2. Aberrant NLRP3 activity in Tcells affects inflammatory responses in human autoinflammatory disease and in mouse models of inflammation and infection. Our results demonstrate that NLRP3 inflammasome activity is not confined to “innate immune cells” but is an integral component of normal adaptive TH1 responses

    Multi-tier Loyalty Programs to Stimulate Customer Engagement

    Get PDF
    Customers differ in their purchase behavior, profitability, attitude toward the firm, and so on. These differences between customers have led to numerous firms introducing multi-tier loyalty programs. A multi-tier loyalty program explicitly distinguishes between customers by means of hierarchical tiers (e.g. Silver, Gold, Platinum) and assigns customers to different tiers based on their past purchase behavior. Next, customers in different tiers are provided varying levels of tangible rewards and intangible benefits, which are potentially powerful instruments to stimulate customer engagement. In this chapter, we focus on the design and effectiveness of such multi-tier loyalty programs. Building on loyalty program and customer prioritization research, we discuss whether, why, and how multi-tier loyalty programs are effective (or not) in influencing customer behavior, thereby enhancing customer engagement and financial performance

    The role of the complement system in traumatic brain injury: a review

    Get PDF
    Traumatic brain injury (TBI) is an important cause of disability and mortality in the western world. While the initial injury sustained results in damage, it is the subsequent secondary cascade that is thought to be the significant determinant of subsequent outcomes. The changes associated with the secondary injury do not become irreversible until some time after the start of the cascade. This may present a window of opportunity for therapeutic interventions aiming to improve outcomes subsequent to TBI. A prominent contributor to the secondary injury is a multifaceted inflammatory reaction. The complement system plays a notable role in this inflammatory reaction; however, it has often been overlooked in the context of TBI secondary injury. The complement system has homeostatic functions in the uninjured central nervous system (CNS), playing a part in neurodevelopment as well as having protective functions in the fully developed CNS, including protection from infection and inflammation. In the context of CNS injury, it can have a number of deleterious effects, evidence for which primarily comes not only from animal models but also, to a lesser extent, from human post-mortem studies. In stark contrast to this, complement may also promote neurogenesis and plasticity subsequent to CNS injury. This review aims to explore the role of the complement system in TBI secondary injury, by examining evidence from both clinical and animal studies. We examine whether specific complement activation pathways play more prominent roles in TBI than others. We also explore the potential role of complement in post-TBI neuroprotection and CNS repair/regeneration. Finally, we highlight the therapeutic potential of targeting the complement system in the context of TBI and point out certain areas on which future research is needed
    • …
    corecore