132 research outputs found
Efficient Symmetry Reduction and the Use of State Symmetries for Symbolic Model Checking
One technique to reduce the state-space explosion problem in temporal logic
model checking is symmetry reduction. The combination of symmetry reduction and
symbolic model checking by using BDDs suffered a long time from the
prohibitively large BDD for the orbit relation. Dynamic symmetry reduction
calculates representatives of equivalence classes of states dynamically and
thus avoids the construction of the orbit relation. In this paper, we present a
new efficient model checking algorithm based on dynamic symmetry reduction. Our
experiments show that the algorithm is very fast and allows the verification of
larger systems. We additionally implemented the use of state symmetries for
symbolic symmetry reduction. To our knowledge we are the first who investigated
state symmetries in combination with BDD based symbolic model checking
A triblock terpolymer vs. blends of diblock copolymers for nanocapsules addressed by three independent stimuli
The chemical structure of triblock terpolymers is exploited to achieve polymer nanocapsules responsive to three different stimuli.</p
Role of Mobility Strategy in moderating the effect Of ERP performance to operational performance: (Study in Indonesian palm oil plantation industries)
Introduction: Inter-observer variability (IOV) in target volume delineation is a well-documented source of geometric uncertainty in radiotherapy. Such variability has not yet been explored in the context of adaptive re-delineation based on imaging data acquired during treatment. We compared IOV in the pre- and mid-treatment setting using expert primary gross tumour volume (GTV) and clinical target volume (CTV) delineations in locoregionally advanced head-and-neck squamous cell carcinoma (HNSCC) and (non-)small cell lung cancer [(N)SCLC]. Material and methods: Five and six observers participated in the HNSCC and (N)SCLC arm, respectively, and provided delineations for five cases each. Imaging data consisted of CT studies partly complemented by FDG-PET and was provided in two separate phases for pre- and mid-treatment. Global delineation compatibility was assessed with a volume overlap metric (the Generalised Conformity Index), while local extremes of IOV were identified through the standard deviation of surface distances from observer delineations to a median consensus delineation. Details of delineation procedures, in particular, GTV to CTV expansion and adaptation strategies, were collected through a questionnaire. Results: Volume overlap analysis revealed a worsening of IOV in all but one case per disease site, which failed to reach significance in this small sample (p-value range .063-.125). Changes in agreement were propagated from GTV to CTV delineations, but correlation could not be formally demonstrated. Surface distance based analysis identified longitudinal target extent as a pervasive source of disagreement for HNSCC. High variability in (N)SCLC was often associated with tumours abutting consolidated lung tissue or potentially invading the mediastinum. Adaptation practices were variable between observers with fewer than half stating that they consistently adapted pre-treatment delineations during treatment. Conclusion: IOV in target volume delineation increases during treatment, where a disparity in institutional adaptation practices adds to the conventional causes of IOV. Consensus guidelines are urgently needed
Petrus van Mastricht and the External and Internal Call:Cartesian Influence of Reformed Thinking?
Improving BDD Based Symbolic Model Checking with Isomorphism Exploiting Transition Relations
Symbolic model checking by using BDDs has greatly improved the applicability
of model checking. Nevertheless, BDD based symbolic model checking can still be
very memory and time consuming. One main reason is the complex transition
relation of systems. Sometimes, it is even not possible to generate the
transition relation, due to its exhaustive memory requirements. To diminish
this problem, the use of partitioned transition relations has been proposed.
However, there are still systems which can not be verified at all. Furthermore,
if the granularity of the partitions is too fine, the time required for
verification may increase. In this paper we target the symbolic verification of
asynchronous concurrent systems. For such systems we present an approach which
uses similarities in the transition relation to get further memory reductions
and runtime improvements. By applying our approach, even the verification of
systems with an previously intractable transition relation becomes feasible.Comment: In Proceedings GandALF 2011, arXiv:1106.081
Maternal and fetal blood lipid concentrations during pregnancy differ by maternal body mass index: findings from the ROLO study
PRONTOX – proton therapy to reduce acute normal tissue toxicity in locally advanced non-small-cell lung carcinomas (NSCLC): study protocol for a randomised controlled trial
The regional concentration of industries and the performance of firms: a multilevel approach
- …
