19 research outputs found

    LCL161 enhances expansion and survival of engineered anti-tumor T cells but is restricted by death signaling

    Get PDF
    BackgroundThe genesis of SMAC mimetic drugs is founded on the observation that many cancers amplify IAP proteins to facilitate their survival, and therefore removal of these pathways would re-sensitize the cells towards apoptosis. It has become increasingly clear that SMAC mimetics also interface with the immune system in a modulatory manner. Suppression of IAP function by SMAC mimetics activates the non-canonical NF-ÎșB pathway which can augment T cell function, opening the possibility of using SMAC mimetics to enhance immunotherapeutics.MethodsWe have investigated the SMAC mimetic LCL161, which promotes degradation of cIAP-1 and cIAP-2, as an agent for delivering transient costimulation to engineered BMCA-specific human TAC T cells. In doing so we also sought to understand the cellular and molecular effects of LCL161 on T cell biology.ResultsLCL161 activated the non-canonical NF-ÎșB pathway and enhanced antigen-driven TAC T cell proliferation and survival. Transcriptional profiling from TAC T cells treated with LCL161 revealed differential expression of costimulatory and apoptosis-related proteins, namely CD30 and FAIM3. We hypothesized that regulation of these genes by LCL161 may influence the drug’s effects on T cells. We reversed the differential expression through genetic engineering and observed impaired costimulation by LCL161, particularly when CD30 was deleted. While LCL161 can provide a costimulatory signal to TAC T cells following exposure to isolated antigen, we did not observe a similar pattern when TAC T cells were stimulated with myeloma cells expressing the target antigen. We questioned whether FasL expression by myeloma cells may antagonize the costimulatory effects of LCL161. Fas-KO TAC T cells displayed superior expansion following antigen stimulation in the presence of LCL161, suggesting a role for Fas-related T cell death in limiting the magnitude of the T cell response to antigen in the presence of LCL161.ConclusionsOur results demonstrate that LCL161 provides costimulation to TAC T cells exposed to antigen alone, however LCL161 did not enhance TAC T cell anti-tumor function when challenged with myeloma cells and may be limited due to sensitization of T cells towards Fas-mediated apoptosis

    Tracking virus outbreaks in the twenty-first century

    Get PDF
    Emerging viruses have the potential to impose substantial mortality, morbidity and economic burdens on human populations. Tracking the spread of infectious diseases to assist in their control has traditionally relied on the analysis of case data gathered as the outbreak proceeds. Here, we describe how many of the key questions in infectious disease epidemiology, from the initial detection and characterization of outbreak viruses, to transmission chain tracking and outbreak mapping, can now be much more accurately addressed using recent advances in virus sequencing and phylogenetics. We highlight the utility of this approach with the hypothetical outbreak of an unknown pathogen, 'Disease X', suggested by the World Health Organization to be a potential cause of a future major epidemic. We also outline the requirements and challenges, including the need for flexible platforms that generate sequence data in real-time, and for these data to be shared as widely and openly as possible

    Lower Macromolecular Content in Tendons of Female Patients with Osteoporosis versus Patients with Osteopenia Detected by Ultrashort Echo Time (UTE) MRI

    No full text
    Tendons and bones comprise a special interacting unit where mechanical, biochemical, and metabolic interplays are continuously in effect. Bone loss in osteoporosis (OPo) and its earlier stage disease, osteopenia (OPe), may be coupled with a reduction in tendon quality. Noninvasive means for quantitatively evaluating tendon quality during disease progression may be critically important for the improvement of characterization and treatment optimization in patients with bone mineral density disorders. Though clinical magnetic resonance imaging (MRI) sequences are not typically capable of directly visualizing tendons, ultrashort echo time MRI (UTE-MRI) is able to acquire a high signal from tendons. Magnetization transfer (MT) modeling combined with UTE-MRI (i.e., UTE-MT-modeling) can indirectly assess macromolecular proton content in tendons. This study aimed to determine whether UTE-MT-modeling could detect differences in tendon quality across a spectrum of bone health. The lower legs of 14 OPe (72 ± 6 years) and 31 OPo (73 ± 6 years) female patients, as well as 30 female participants with normal bone (Normal-Bone, 36 ± 19 years), are imaged using UTE sequences on a 3T MRI scanner. Institutional review board approval is obtained for the study, and all recruited subjects provided written informed consent. A T1 measurement and UTE-MT-modeling are performed on the anterior tibialis tendon (ATT), posterior tibialis tendon (PTT), and the proximal Achilles tendon (PAT) of all subjects. The macromolecular fraction (MMF) is estimated as the main measure from UTE-MT-modeling. The mean MMF in all the investigated tendons was significantly lower in OPo patients compared with the Normal-Bone cohort (mean difference of 24.2%, p p p = 0.02). Only the PPT shows significantly higher T1 values in OPo patients compared with the Normal-Bone cohort (mean difference 17.6%, p < 0.01). Considering the differences between OPo and OPe groups with similar age ranges, tendon deterioration associated with declining bone health was found to be larger than a priori detected differences caused purely by aging, highlighting UTE-MT MRI techniques as useful methods in assessing tendon quality over the course of progressive bone weakening

    DataSheet_1_LCL161 enhances expansion and survival of engineered anti-tumor T cells but is restricted by death signaling.docx

    No full text
    BackgroundThe genesis of SMAC mimetic drugs is founded on the observation that many cancers amplify IAP proteins to facilitate their survival, and therefore removal of these pathways would re-sensitize the cells towards apoptosis. It has become increasingly clear that SMAC mimetics also interface with the immune system in a modulatory manner. Suppression of IAP function by SMAC mimetics activates the non-canonical NF-ÎșB pathway which can augment T cell function, opening the possibility of using SMAC mimetics to enhance immunotherapeutics.MethodsWe have investigated the SMAC mimetic LCL161, which promotes degradation of cIAP-1 and cIAP-2, as an agent for delivering transient costimulation to engineered BMCA-specific human TAC T cells. In doing so we also sought to understand the cellular and molecular effects of LCL161 on T cell biology.ResultsLCL161 activated the non-canonical NF-ÎșB pathway and enhanced antigen-driven TAC T cell proliferation and survival. Transcriptional profiling from TAC T cells treated with LCL161 revealed differential expression of costimulatory and apoptosis-related proteins, namely CD30 and FAIM3. We hypothesized that regulation of these genes by LCL161 may influence the drug’s effects on T cells. We reversed the differential expression through genetic engineering and observed impaired costimulation by LCL161, particularly when CD30 was deleted. While LCL161 can provide a costimulatory signal to TAC T cells following exposure to isolated antigen, we did not observe a similar pattern when TAC T cells were stimulated with myeloma cells expressing the target antigen. We questioned whether FasL expression by myeloma cells may antagonize the costimulatory effects of LCL161. Fas-KO TAC T cells displayed superior expansion following antigen stimulation in the presence of LCL161, suggesting a role for Fas-related T cell death in limiting the magnitude of the T cell response to antigen in the presence of LCL161.ConclusionsOur results demonstrate that LCL161 provides costimulation to TAC T cells exposed to antigen alone, however LCL161 did not enhance TAC T cell anti-tumor function when challenged with myeloma cells and may be limited due to sensitization of T cells towards Fas-mediated apoptosis.</p
    corecore