885 research outputs found

    End-of-Life Impact on the Cradle-to-Grave LCA of Light-Duty Commercial Vehicles in Europe

    Get PDF
    A cradle-to-grave life cycle assessment focused on end-of-life (EoL) was conducted in this study for three configurations of a light-duty commercial vehicle (LDCV): diesel, compressed natural gas (CNG), and battery electric vehicle (BEV). The aim is to investigate the impact of recycling under two EoL scenarios with different allocation methods. The first is based on the traditional avoided burden method, while the second is based on the circular footprint formula (CFF) developed by the European Commission. For each configuration, a detailed multilevel waste management scheme was developed in compliance with the 2000/53/CE directive and ISO22628 standard. The results showed that the global warming potential (GWP) impact under the CFF method is significantly greater when compared to the avoided burden method because of the A-parameter, which allocates the burdens and benefits between the two connected product systems. Furthermore, in all configurations and scenarios, the benefits due to the avoided production of virgin materials compensate for the recycling burdens within GWP impact. The main drivers of GWP reduction are steel recycling for all of the considered LDCVs, platinum, palladium, and rhodium recycling for the diesel and CNG configurations, and Li-ion battery recycling for the BEV configuration. Finally, the EoL stage significantly reduces the environmental impact of those categories other than GWP

    Nanostructures by Self-assembling Peptide Amphiphile as Potential Selective Drug Carriers

    Get PDF
    The self-assembling behaviour, at physiological pH, of the amphiphile peptide (C18)(2)L5CCK8 in nanostructures is reported. Stable aggregates presenting a critical micellar concentration of 2 X 10(-6) mol kg(-1), and characterized by water exposed CCK8 peptide in P-sheet conformation, are obtained. Small angle neutron scattering experiments are indicative for a 3D structure with dimensions >= 100 nm. AFM images confirm the presence of nanostructures. Fluorescence experiments indicating the sequestration of pyrene, chosen as drug model, and the anticancer Doxorubicin within the nanostructures are reported

    Peptide-based hydrogels and nanogels for delivery of doxorubicin

    Get PDF
    Introduction: The clinical use of the antitumoral drug doxorubicin (Dox) is reduced by its dose-limiting toxicity, related to cardiotoxic side effects and myelosuppression. In order to overcome these drawbacks, here we describe the synthesis, the structural characterization and the in vitro cytotoxicity assays of hydrogels (HGs) and nanogels (NGs) based on short peptide sequences loaded with Dox or with its liposomal formulation, Doxil. Methods: Fmoc-FF alone or in combination with (FY)3 or PEG8-(FY)3 peptides, at two different ratios (1/1 and 2/1 v/v), were used for HGs and NGs formulations. HGs were prepared according to the “solvent-switch” method, whereas NGs were obtained through HG submicroni-tion by the top-down methodology in presence of TWEEN¼60 and SPAN¼60 as stabilizing agents. HGs gelation kinetics were assessed by Circular Dichroism (CD). Stability and size of NGs were studied using Dynamic Light Scattering (DLS) measurements. Cell viability of empty and filled Dox HGs and NGs was evaluated on MDA-MB-231 breast cancer cells. Moreover, cell internalization of the drug was evaluated using immunofluorescence assays. Results: Dox filled hydrogels exhibit a high drug loading content (DLC=0.440), without syneresis after 10 days. Gelation kinetics (20–40 min) and the drug release (16–28%) over time of HGs were found dependent on relative peptide composition. Dox filled NGs exhibit a DLC of 0.137 and a low drug release (20–40%) after 72 h. Empty HGs and NGs show a high cell viability (>95%), whereas Dox loaded ones significantly reduce cell viability after 24 h (49–57%) and 72 h (7–25%) of incubation, respectively. Immunofluorescence assays evidenced a different cell localization for Dox delivered through HGs and NGs with respect to the free drug. Discussion: A modulation of the Dox release can be obtained by changing the ratios of the peptide components. The different cellular localization of the drug loaded into HGs and NGs suggests an alternative internalization mechanism. The high DLC, the low drug release and preliminary in vitro results suggest a potential employment of peptide-based HGs and NGs as drug delivery tools

    Synthesis of easily sinterable ceramic electrolytes based on Bi-doped 8YSZ for IT-SOFC applications

    Get PDF
    Ceramic electrolytes formed by Bi (4 mol%)-doped 8YSZ, i.e., Y2O3 (8 mol%)-doped ZrO2, were synthesized by a simple co-precipitation route, using ammonia solution as precipitating agent. The amorphous as-synthesized powders convert into zirconia-based single phase with fluorite structure through a mild calcination step at 500 \ub0C. The calcined powders were sintered at very low temperatures (i.e., 900-1100 \ub0C) achieving in both cases very high values of relative densities (i.e., > 95%); the corresponding microstructures were highly homogeneous and characterized by micrometric grains or sub-micrometric grains for sintering at 1100 \ub0C and 900 \ub0C, respectively. Very interesting electrochemical properties were determined by Electrochemical Impedance Spectroscopy (EIS) in the best samples. In particular, their total ionic conductivity, recorded at 650 \ub0C, are 6.06 7 10-2S/cm and 4.44 7 10-2S/cm for Bi (4 mol%)-doped 8YSZ sintered at 1100 \ub0C and 900 \ub0C, respectively. Therefore, Bi was proved to be an excellent sintering aid dopant for YSZ, highly improving its densification at lower temperatures while increasing its total ionic conductivity

    Return to school in the COVID-19 era: considerations for temperature measurement

    Get PDF
    COVID-19 pandemics required a reorganisation of social spaces to prevent the spread of the virus. Due to the common presence of fever in the symptomatic patients, temperature measurement is one of the most common screening protocols. Indeed, regulations in many countries require temperature measurements before entering shops, workplaces, and public buildings. Due to the necessity of providing rapid non-contact and non-invasive protocols to measure body temperature, infra-red thermometry is mostly used. Many countries are now facing the need to organise the return to school and universities in the COVID-19 era, which require solutions to prevent the risk of contagion between students and/or teachers and technical/administrative staff. This paper highlights and discusses some of the strengths and limitations of infra-red cameras, including the site of measurements and the influence of the environment, and recommends to be careful to consider such measurements as a single \u201csafety rule\u201d for a good return to normality

    Self-supporting hydrogels based on fmoc-derivatized cationic hexapeptides for potential biomedical applications

    Get PDF
    Peptide-based hydrogels (PHGs) are biocompatible materials suitable for biological, biomedical, and biotechnological applications, such as drug delivery and diagnostic tools for imaging. Recently, a novel class of synthetic hydrogel-forming amphiphilic cationic peptides (referred to as series K), containing an aliphatic region and a Lys residue, was proposed as a scaffold for bioprinting applications. Here, we report the synthesis of six analogues of the series K, in which the acetyl group at the N-terminus is replaced by aromatic portions, such as the Fmoc protecting group or the Fmoc-FF hydrogelator. The tendency of all peptides to self-assemble and to gel in aqueous solution was investigated using a set of biophysical techniques. The structural characterization pointed out that only the Fmoc-derivatives of series K keep their capability to gel. Among them, Fmoc-K3 hydrogel, which is the more rigid one (G’ = 2526 Pa), acts as potential material for tissue engineering, fully supporting cell adhesion, survival, and duplication. These results describe a gelification process, allowed only by the correct balancing among aggregation forces within the peptide sequences (e.g., van der Waals, hydrogen bonding, and π–π stacking)

    Navigation Facility for High Accuracy Offline Trajectory and Attitude Estimation in Airborne Applications

    Get PDF
    The paper focuses on a navigation facility, relying on commercial-off-the-shelf (COTS) technology, developed to generate high-accuracy attitude and trajectory measurements in postprocessing. Target performance is cm-level positioning with tenth of degree attitude accuracy. The facility is based on the concept of GPS-aided inertial navigation but comprises carrier-phase differential GPS (CDGPS) processing and attitude estimation based on multiantenna GPS configurations. Expected applications of the system include: (a) performance assessment of integrated navigation systems, developed for general aviation aircraft and medium size unmanned aircraft systems (UAS); (b) generation of reference measurements to evaluate the flight performance of airborne sensors (e.g., radar or laser); and (c) generation of reference trajectory and attitude for improving imaging quality of airborne remote sensing data. The paper describes system architecture, selected algorithms for data processing and integration, and theoretical performance evaluation. Experimental results are also presented confirming the effectiveness of the implemented approach

    A fast vertical trajectory prediction method for air traffic management, and relevant ATM system

    Get PDF
    The invention concerns a method and system for the prediction of aircrafts vertical trajectory, in particular for Air Traffic Management, comprising the following flight calculation modules: Take-off; Climb; Cruise; Descent; and Landing, corresponding to the relevant flight phases, wherein: the calculation of the predicted aircraft trajectory is effected by using a set of TEM equations comprising, as output variables, the vertical rate of climb or descent, the true air speed, the energy share factor, the thrust and the drag, the mass of the aircraft modeled as point-mass, and comprising, as inpu variables, the Mach number depending on true air speed and temperature and altitude, the gravity acceleration, and the fuel flow, and the flight path angle; the calculation of the predicted aircraft trajectory for Cruise phase, wherein only the mass is varying, is performed by using the following analytical solution to said set of TEM equations

    Views of Mental Health Professionals on Positive Changes in Service Practices and Staff-User Relationships After One Year of Covid-19 Pandemic in Italy

    Get PDF
    Abstract This study explored views of mental health services (MHS) professionals regarding positive changes in service practices and organizations, and staff-user relationships after one year of COVID19 in Italy. Professionals from a community-oriented MHS completed online the Questionnaire on MHS Transformations during the COVID-19 pandemic, a 30-item tool developed by a participatory approach and validated. Of the 184 participants, 91.8% felt it was ‘‘true/definitely true’’ that during the pandemic they had informed users on procedures to reduce contagion risks, and 82.1% stated that they had increased telephone contact with users. Sixty-nine percent of professionals reported that staff revised treatment plans according to new needs of care and 78.6% stated that they had been able to mediate between user needs and safe working procedures. Moreover, 79.4% of respondents stated that they had rediscovered the importance of gestures and habits, and 65% that they had gained strength among colleagues to face fear. Fifty-four percent of participants admitted that they had discovered unexpected personal resources in users. Overall, 59.6% of participants stated that they found some positives in the COVID-19 experience. Perceived positive changes was greater among professionals from community facilities vs. those from hospital and residential facilities. In community-oriented MHS, the pandemic offered an opportunity to change practices and rethink the meaning of relationships between people. This data may be useful in generating a more balanced understanding of COVID-19’s impact on MHS and for MHS planning in the pandemic era
    • 

    corecore