166 research outputs found

    Synthesis, characterization and antibacterial studies of metal complexes of sulfadiazine with N-alkyl-N-phenyldithiocarbamate

    Get PDF
    Co(II), Cu(II), Pd(II) and Pt(II) complexes of 4-amino-N-(2-pyrimidinyl)benzene sulfonamide (sulfadiazine) with some N-alkyl-N-phenyl dithiocarbamate have been synthesized and characterized by elemental analysis, conductivity measurements, UV-Vis and FTIR spectroscopy. The complexes are formulated as four coordinate MN2S2 species in which the metal ions are coordinated to one molecule of sulfadiazine through the pyrimidinyl and sulfulnamido nitrogen atoms and one molecule of dithiocarbamate through two sulfur atoms with both molecules acting as bidentate chelating ligands. The in vitro antibacterial activities of the complexes and sulfadiazine were evaluated against eight bacteria strains using the agar well diffusion method. The metal complexes showed varied antibacterial properties and their minimum inhibitory concentration (MIC) and maximum bactericidal concentration (MBC) were determined. KEY WORDS: Sulfadiane, Dithiocarbamate, Metal complexes, Antibacterial, Drug resistance Bull. Chem. Soc. Ethiop. 2013, 27(1), 77-84.DOI: http://dx.doi.org/10.4314/bcse.v27i1.

    Diversity and abundance of butterfly species (Lepidoptera) fauna in Federal University of Agriculture, Makurdi forestry nursery, Benue State, Nigeria

    Get PDF
    Butterflies belong to one of the most important taxa of insects. Understanding their significance in an ecosystem as an environmental health indicator and pollination of flowering plants is crucial to achieving sustainability and conservation of floral diversity. Owing to habitat destruction due to some anthropogenic activities, butterflies are fast disappearing and at present, their survival is under threat. The study assessed the diversity and abundance of butterfly species in the Federal University of Agriculture, Makurdi forestry nursery, Nigeria. Line transects were used to survey three habitats within and around the forestry nursery using handheld sweep nets in March and April, 2016. Data were analyzed using descriptive statistics and One-way analysis of variance. A total of 337 individuals representing 17 butterfly species belonging to 5 families were recorded across the three habitat types. Out of these, members belonging to the family Nymphalidae were the most common with 7 species being recorded accounting for 41.2% of the total species and 26.7% of total number of individuals collected. Species richness, evenness and diversity varied from habitat to habitat and decreased from dry land area to swampy area (D= 2.336 – 1.966), (J= 0.336 – 0.236), (H1= 1.394 – 0.955). There was no significant different in species composition/richness across habitat types at 0.05%. It was recommended that management effort towards conservation be put in place so as to ensure sustenance of butterflies and ecosystem services derived from them, and further exploration of butterfly species be done to update this checklist.Keywords: Butterfly, Species, Forestry Nursery, Diversity, Abundanc

    Synthesis, characterization and antibacterial screening of 2,4-diaminopyrimidine pyrimethamine and trimethoprim silver complexes

    Get PDF
    Air stable silver Ag(I) complexes of pyrimethamine and trimethoprim drugs have been synthesized and characterized by elemental analysis, Fourier transform infrared (FTIR) and ultraviolet visible (UV-Vis) spectroscopy, and conductivity measurement. The metal complexes formed a three and four coordinate geometry with the ligands acting as a monodentate molecule bonding to the silver ion in each case through the pyrimidine N (1) nitrogen. The complexes have non-electrolyte behaviour in dimethylformamide (DMF) solution with its low conductivity values. Silver complexes, their free ligands alongside the corresponding silver salts were screened against selected bacterial isolates. All the silver complexes showed enhanced antibacterial activities compared to their free ligands and potential antibacterial agents have been identified.Key words: Pyrimethamine, trimethoprim, silver complexes, antibacterial screening, minimum inhibitory concentration

    Evaluation of Biologically Active Compounds from Calendula officinalis Flowers using Spectrophotometry

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>This study aimed to quantify the active biological compounds in <it>C. officinalis </it>flowers. Based on the active principles and biological properties of marigolds flowers reported in the literature, we sought to obtain and characterize the molecular composition of extracts prepared using different solvents. The antioxidant capacities of extracts were assessed by using spectrophotometry to measure both absorbance of the colorimetric free radical scavenger 2,2-diphenyl-1-picrylhydrazyl (DPPH) as well as the total antioxidant potential, using the ferric reducing power (FRAP) assay.</p> <p>Results</p> <p>Spectrophotometric assays in the ultraviolet-visible (UV-VIS) region enabled identification and characterization of the full range of phenolic and flavonoids acids, and high-performance liquid chromatography (HPLC) was used to identify and quantify phenolic compounds (depending on the method of extraction). Methanol ensured more efficient extraction of flavonoids than the other solvents tested.</p> <p>Antioxidant activity in methanolic extracts was correlated with the polyphenol content.</p> <p>Conclusions</p> <p>The UV-VIS spectra of assimilator pigments (e.g. chlorophylls), polyphenols and flavonoids extracted from the <it>C. officinalis </it>flowers consisted in quantitative evaluation of compounds which absorb to wavelengths broader than 360 nm.</p

    Preliminary phytochemical screening and In vitro antioxidant activities of the aqueous extract of Helichrysum longifolium DC

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Many oxidative stress related diseases are as a result of accumulation of free radicals in the body. A lot of researches are going on worldwide directed towards finding natural antioxidants of plants origins. The aims of this study were to evaluate <it>in vitro </it>antioxidant activities and to screen for phytochemical constituents of <it>Helichrysum longifolium </it>DC. [Family Asteraceae] aqueous crude extract.</p> <p>Methods</p> <p>We assessed the antioxidant potential and phytochemical constituents of crude aqueous extract of <it>Helichrysum longifolium </it>using tests involving inhibition of superoxide anions, DPPH, H<sub>2</sub>O<sub>2</sub>, NO and ABTS. The flavonoid, proanthocyanidin and phenolic contents of the extract were also determined using standard phytochemical reaction methods.</p> <p>Results</p> <p>Phytochemical analyses revealed the presence of tannins, flavonoids, steroids and saponins. The total phenolic content of the aqueous leaf extract was 0.499 mg gallic acid equivalent/g of extract powder. The total flavonoid and proanthocyanidin contents of the plant were 0.705 and 0.005 mg gallic acid equivalent/g of extract powder respectively. The percentage inhibition of lipid peroxide at the initial stage of oxidation showed antioxidant activity of 87% compared to those of BHT (84.6%) and gallic acid (96%). Also, the percentage inhibition of malondialdehyde by the extract showed percentage inhibition of 78% comparable to those of BHT (72.24%) and Gallic (94.82%).</p> <p>Conclusions</p> <p>Our findings provide evidence that the crude aqueous extract of <it>H. longifolium </it>is a potential source of natural antioxidants, and this justified its uses in folkloric medicines.</p

    Pseudonocardia hispaniensis sp. nov., a novel actinomycete isolated from industrial wastewater activated sludge

    Full text link
    A novel actinomycete, designated PA3T, was isolated from an oil refinery wastewater treatment plant, located in Palos de la frontera, Huelva, Spain, and characterized taxonomically by using a polyphasic approach. Phylogenetic analysis based on 16S rRNA gene sequences showed that the isolate formed a distinct subclade in the Pseudonocardia tree together with Pseudonocardia asaccharolytica DSM 44247T. The chemotaxonomic properties of the isolate, for example, the presence of MK-8 (H4) as the predominant menaquinone and iso-C16:0 as the major fatty acid are consistent with its classification in the genus Pseudonocardia. DNA:DNA pairing experiments between the isolate and the type strain of P. asaccharolytica DSM 44247T showed that they belonged to separate genomic species. The two strains were readily distinguished using a combination of phenotypic properties. Consequently, it is proposed that isolate PA3T represents a novel species for which the name Pseudonocardia hispaniensis sp. nov. is proposed. The type strain is PA3T (= CCM 8391T = CECT 8030T).Cuesta Amat, G.; Soler Hernández, A.; Alonso Molina, JL.; Ruvira, M.; Lucena, T.; Arahal, D.; Goodfellow, M. (2013). Pseudonocardia hispaniensis sp. nov., a novel actinomycete isolated from industrial wastewater activated sludge. Antonie van Leeuwenhoek. 103(1):135-142. doi:10.1007/s10482-012-9792-1S1351421031Alonso JL, Cuesta G, Ramírez GW, Morenilla JJ, Bernácer I, Lloret RM (2009) Manual de técnicas avanzadas para la identificación y control de bacterias filamentosas. Epsar-Generalitat Valenciana, España, p 21–36Ara I, Tsetseg B, Daram D, Suto M, Ando K (2011) Pseudonocardia mongoliensis sp. nov. and Pseudonocardia khuvsgulensis sp. nov., isolated from soil. Int J Syst Evol Microbiol 61:747–756Arahal DR, Sánchez E, Macián MC, Garay E (2008) Value of recN sequences for species identification and as a phylogenetic marker within the family ‘‘Leuconostocaceae’’. Int Microbiol 11:33–39Auffret M, Labbé D, Thouand G, Greer CW, Fayolle-Guichard F (2009) Degradation of a mixture of hydrocarbons, gasoline, and diesel oil additives by Rhodococcus aetherivorans and Rhodococcus wratislaviensis. Appl Environ Microbiol 75:7774–7782Cashion P, Hodler-Franklin MA, McCully J, Franklin M (1977) A rapid method for base ratio determination of bacterial DNA. Anal Biochem 81:461–466Chen HH, Qin S, Li J, Zhang YQ, Xu LH, Jiang CL, Kim CJ, Li WJ (2009) Pseudonocardia endophytica sp. nov., isolated from pharmaceutical plant Lobelia clavata. Int J Syst Evol Microbiol 59:559–563De Ley J, Cattoir H, Reynaerts A (1970) The quantitative measurement of DNA hybridization from renaturation rates. Eur J Biochem 12:133–142Duangmal K, Thamchaipenet A, Matsumoto A, Takahashi Y (2009) Pseudonocardia acaciae sp. nov., isolated from roots of Acacia auriculiformis A. Cunn. ex Benth. Int J Syst Evol Microbiol 59:1487–1491Gordon RE, Barnett DA, Handerhan JE, Pang CH-N (1974) Nocardia coeliaca, Nocardia autotrophica, and the nocardin strain. Int J Syst Bacteriol 24:54–63Hamid ME, Minnikin DE, Goodfellow M, Ridell M (1993) Thin-layer chromatographic analysis of glycolipids and mycolic acids from Mycobacterium farcinogenes, Mycobacterium senegalense and related taxa. Zbl Bakt 279:354–367Hasegawa T, Takizawa M, Tanida S (1983) A rapid analysis for chemical grouping of aerobic actinomycetes. J Gen Microbiol 29:319–322Henssen A (1957) Beiträge zur Morphologie und Systematik der thermophilen Actinomyceten. Arch Mikrobiol 26:373–414Huang,Y, Goodfellow M (2012) Genus Pseudonocardia Hennsen 1957, 408VP emend. In: Goodfellow M, Kämpfer P, Busse H-J, Trujillo M, Suzuki KE, Ludwig W, Whitman WB (eds) Bergey’s manual of systematic bacteriology, 2nd edn, vol 5, part B. Springer, New YorkHuang Y, Wang L, Lu Z, Hong L, Liu Z, Tan GYA, Goodfellow M (2002) Proposal to combine the genera Actinobispora and Pseudonocardia in an emended genus Pseudonocardia, and description of Pseudonocardia zijingensis sp. nov. Int J Syst Evol Microbiol 52:977–982Huss VAR, Festl H, Schleifer KH (1983) Studies on the spectrophotometric determination of DNA hybridization from renaturation rates. Syst Appl Microbiol 4:184–192Kaewkla O, Franco CMM (2010) Pseudonocardia adelaidensis sp. nov., an endophytic actinobacterium isolated from the surface-sterilized stem of a grey box tree (Eucalyptus microcarpa). Int J Syst Evol Microbiol 60:2818–2822Kaewkla O, Franco CMM (2011) Pseudonocardia eucalypti sp. nov., an endophytic actinobacterium with a unique knobby spore surface, isolated from roots of a native Australian eucalyptus tree. Int J Syst Evol Microbiol 61:742–746Kämpfer P, Kohlweyer U, Thiemer B, Andreesen JR (2006) Pseudonocardia tetrahydrofuranoxydans sp. nov. Int J Syst Evol Microbiol 56:1535–1538Labeda DP, Goodfellow M, Chun J, Zhi XY, Li WJ (2011) Reassessment of the systematics of the suborder Pseudonocardineae: transfer of genera within the family Actinosynnemataceae Labeda and Kroppenstedt 2000 emend. Zhi et al. 2009 into an emended family Pseudonocardiaceae Embley et al. 1989 emend. Zhi et al. 2009. Int J Syst Evol Microbiol 61:1259–1264Lane DJ (1991) 16S/23S rRNA sequencing. In: Stackebrandt E, Goodfellow M (eds) Nucleic acid techniques in bacterial systematics. Wiley, Chichester, pp 115–148Lechevalier MP, Lechevalier H (1970) Chemical composition as a criterion in the classification of aerobic actinomycetes. Int J Syst Bacteriol 20:435–443Lechevalier MP, Stern AER, Lechevalier HA (1981) Phospholipids in the taxonomy of actinomycetes. Zbl Bakt Suppl 11:111–116Li J, Zhao GZ, Huang HY, Zhu WY, Lee JC, Kim CJ, Xu LH, Zhang LX, Li WJ (2010) Pseudonocardia rhizophila sp. nov., a novel actinomycete isolated from a rhizosphere soil. Antonie Van Leeuwenhoek 98:77–83Liu ZP, Wu JF, Liu ZH, Liu SJ (2006) Pseudonocardia ammonioxydans sp. nov., isolated from coastal sediment. Int J Syst Evol Microbiol 56:555–558Lucena T, Pascual J, Garay E, Arahal DR, Macián MC, Pujalte MJ (2010) Haliea mediterranea sp. nov., a new marine gammaproteobacterium. Int J Syst Evol Microbiol 60:1844–1848Ludwig W et al (2004) ARB: a software environment for sequence data. Nucleic Acids Res 32:1363–1371Mahendra S, Alvarez-Cohen L (2005) Pseudonocardia dioxanivorans sp. nov., a novel actinomycete that grows on 1,4-dioxane. Int J Syst Evol Microbiol 55:593–598Mesbah M, Premachandran U, Whitman WB (1989) Precise measurement of the G+C content of deoxyribonucleic acid by high-performance liquid chromatography. Int J Syst Bacteriol 39:159–167MIDI (2008) Sherlock microbial identification system operating manual, version 6.1. MIDI Inc., NewarkMinnikin DE, O’Donnell AG, Goodfellow M, Alderson G, Athalye M, Schaal A, Parlett JH (1984) An integrated procedure for the extraction of isoprenoid quinones and polar lipids. J Microbiol Methods 2:233–241Nam S-W, Chun J, Kim S, Kim W, Zakrzewska-Czerwinska J, Goodfellow M (2003) Tsukamurella spumae sp. nov., a novel actinomycete associated with foaming in activated sludge plants. Syst Appl Microbiol 26:367–375Okoh A, Ajisebutu S, Babalola G, Trejo-Hernandez MR (2001) Potential of Burkholderia cepacia RQ1 in the biodegradation of heavy crude oil. Int Microbiol 4:83–87Park SW, Park ST, Lee JE, Kim YM (2008) Pseudonocardia carboxydivorans sp. nov., a carbon monoxide-oxidizing actinomycete, and an emended description of the genus Pseudonocardia. Int J Syst Evol Microbiol 58:2475–2478Pruesse E, Quast C, Knittel K, Fuchs B, Ludwig W, Peplies J, Glöckner FO (2007) SILVA: a comprehensive online resource for quality checked and aligned ribosomal RNA sequence data compatible with ARB. Nucleic Acids Res 35:7188–7196Qin S, Su YY, Zhang YQ, Wang HB, Jiang CL, Xu LH, Li WJ (2008) Pseudonocardia ailaonensis sp. nov., isolated from soil in China. Int J Syst Evol Microbiol 58:2086–2089Qin S, Zhu WY, Jiang JH, Klenk HP, Li J, Zhao GZ, Xu LH, Li WJ (2010) Pseudonocardia tropica sp. nov., an endophytic actinomycete isolated from the stem of Maytenus austroyunnanensis. Int J Syst Evol Microbiol 60:2524–2528Qin S, Xing K, Fei SM, Lin Q, Chen XM, Li WJ, Jiang JH (2011) Pseudonocardia sichuanensis sp. nov., a novel endophytic actinomycete isolated from the root of Jatropha curcus L. Antonie Van Leeuwenhoek 99:395–401Rehfuss M, Urban J (2005) Rhodococcus phenolicus sp. nov., a novel bioprocessor isolated actinomycete with the ability to degrade chlorobenzene, dichlorobenzene and phenol as sole carbon sources. Syst Appl Microbiol 28:695–701Reichert K, Lipski A, Pradella S, Stackebrandt E, Altendorf K (1998) Pseudonocardia asaccharolitica sp. nov. and Pseudonocardia sulfidoxidans sp. nov., two new dimethyl disulfide-degrading actinomycetes and emended description of the genus Pseudonocardia. Int J Syst Bacteriol 48:441–449Sakiyama Y, Thao NKN, Vinh HV, Giang NM, Miyadoh S, Hop DV, Ando K (2010) Pseudonocardia babensis sp. nov., isolated from plant litter. Int J Syst Evol Microbiol 60:2336–2340Sasser M (1990) Identification of bacteria by gas chromatography of cellular fatty acids. MIDI Tech Note 101:1–7Schäfer J, Busse HJ, Kämpfer P (2009) Pseudonocardia parietis sp. nov., from the indoor environment. Int J Syst Evol Microbiol 59:2449–2452Seviour RJ, Kragelund C, Kong Y, Eales K, Nielsen JL, Nielsen PH (2008) Ecophysiology of the actinobacteria in activated sludge systems. Antonie Van Leeuwenhoek 94:21–33Shirling EB, Gottlieb D (1966) Methods for characterization of Streptomyces species. Int J Syst Bacteriol 16:313–340Staneck JL, Roberts GD (1974) Simplified approach to identification of aerobic actinomycetes by thin-layer chromatography. Appl Microbiol 28:226–231Warwick S, Bowen T, McVeigh HP, Embley TM (1994) A phylogenetic analysis of the family Pseudonocardiaceae and the genera Actinokineospora and Saccharothrix with 16S rRNA sequences and a proposal to combine the genera Amycolata and Pseudonocardia in an emended genus Pseudonocardia. Int J Syst Bacteriol 44:293–299Wayne LG, Brenner DJ, Colwell RR, Grimont PAD, Kandler O, Krichevsky MI, Moore LH, Moore WEC, Murray RGE, Stackebrandt E, Starr MP, Trüper HG (1987) International committee on systematic bacteriology report on the ad hoc committee on the reconciliation of approaches to bacterial systematics. Int J Syst Bacteriol 37:463–464Yarza P, Ludwig W, Euzeby J, Amann R, Schleifer KH, Glöckner FO, Rossello-Mora R (2010) Update of the all-species living tree project based on 16S and 23S rRNA sequence analyses. Syst Appl Microbiol 33:291–299Zhao GZ, Li J, Zhu WY, Li XP, Tian SZ, Zhao LX, Xu LH, Li WJ (2011a) Pseudonocadia bannaensis sp. nov., a novel actinomycete isolated from the surface-sterilized roots of Artemisiae annua L. Antonie Van Leeuwenhoek 100:35–42Zhao GZ, Li J, Huang HY, Zhu WY, Zhao LX, Tang SK, Xu LH, Li WJ (2011b) Pseudonocardia artemisiae sp. nov., isolated from surface-sterilized Artemisia annua L. Int J Syst Evol Microbiol 61:1061–1065Zhao GZ, Li J, Huang HY, Zhu WY, Park DJ, Kim CJ, Xu LH, Li WJ (2011c) Pseudonocardia kunmingensis sp. nov., an actinobacterium isolated from surface-sterilized roots of Artemisia annua L. Int J Syst Evol Microbiol 61:2292–229

    EAPP: Gatekeeper at the crossroad of apoptosis and p21-mediated cell-cycle arrest

    Get PDF
    We previously identified and characterized E2F-associated phospho-protein (EAPP), a nuclear phosphoprotein that interacts with the activating members of the E2F transcription factor family. EAPP levels are frequently elevated in transformed human cells. To examine the biological relevance of EAPP, we studied its properties in stressed and unstressed cells. Overexpression of EAPP in U2OS cells increased the fraction of G1 cells and lead to heightened resistance against DNA damage- or E2F1-induced apoptosis in a p21-dependent manner. EAPP itself becomes upregulated in confluent cells and after DNA damage and stimulates the expression of p21 independently of p53. It binds to the p21 promoter and seems to be required for the assembly of the transcription initiation complex. RNAi-mediated knockdown of EAPP expression brought about increased sensitivity towards DNA damage and resulted in apoptosis even in the absence of stress. Our results indicate that the level of EAPP is critical for cellular homeostasis. Too much of it results in G1 arrest and resistance to apoptosis, which, paradoxically, might favor cellular transformation. Too little EAPP seems to retard the expression not only of the p21 gene, but also of a number of other genes and ultimately results in apoptosis
    corecore