7,380 research outputs found

    Frequency-dependent and correlational selection pressures have conflicting consequences for assortative mating in a color-polymorphic lizard, Uta stansburiana

    Get PDF
    Acknowledgments We would like to thank the numerous undergraduate researchers involved with this project for their invaluable assistance in lizard rearing and data collection. We also thank D. Haisten, A. Runemark, Y. Takahashi, and M. Verzijden for insightful comments on the manuscript. This project was funded by National Science Foundation DEBOS-15973 to A.G.M. and B.R.S.Peer reviewedPublisher PD

    Wireless recording of the calls of Rousettus aegyptiacus and their reproduction using electrostatic transducers

    Get PDF
    Bats are capable of imaging their surroundings in great detail using echolocation. To apply similar methods to human engineering systems requires the capability to measure and recreate the signals used, and to understand the processing applied to returning echoes. In this work, the emitted and reflected echolocation signals of Rousettus aegyptiacus are recorded while the bat is in flight, using a wireless sensor mounted on the bat. The sensor is designed to replicate the acoustic gain control which bats are known to use, applying a gain to returning echoes that is dependent on the incurred time delay. Employing this technique allows emitted and reflected echolocation calls, which have a wide dynamic range, to be recorded. The recorded echoes demonstrate the complexity of environment reconstruction using echolocation. The sensor is also used to make accurate recordings of the emitted calls, and these calls are recreated in the laboratory using custom-built wideband electrostatic transducers, allied with a spectral equalization technique. This technique is further demonstrated by recreating multi-harmonic bioinspired FM chirps. The ability to record and accurately synthesize echolocation calls enables the exploitation of biological signals in human engineering systems for sonar, materials characterization and imaging

    Non-linear Microwave Surface Impedance of Epitaxial HTS Thin Films in Low DC Magnetic Fields

    Full text link
    We have carried out non-linear microwave (8 GHz) surface impedance measurements of three YBaCuO thin films in dc magnetic fields HdcH_{dc} (parallel to c axis) up to 12 mT using a coplanar resonator technique. In zero dc field the three films, deposited by the same method, show a spread of low-power residual surface resistance, RresR_{res} and penetration depth, λ\lambda (T=15 K) within a factor of 1.9. However, they exhibit dramatically different microwave field, HrfH_{rf} dependences of the surface resistance, RsR_s, but universal Xs(Hrf)X_s(H_{rf}) dependence. Application of a dc field was found to affect not only absolute values of RsR_s and XsX_s, but the functional dependences Rs(Hrf)R_s(H_{rf}) and Xs(Hrf)X_s(H_{rf}) as well. For some of the samples the dc field was found to decrease RsR_s below its zero-field low-power value.Comment: 4 pages, 4 figures. To be published in IEEE Trans. Appl. Supercond., June 199

    Superconducting Microwave Cavity Made of Bulk MgB2

    Full text link
    We report the successful manufacture and characterization of a microwave resonant cylindrical cavity made of bulk MgB2 superconductor (Tc = 38.5 K), which has been produced by the Reactive Liquid Mg Infiltration technique. The quality factor of the cavity for the TE011 mode, resonating at 9.79 GHz, has been measured as a function of the temperature. At T = 4.2 K, the unloaded quality factor is 2.2x10^5; it remains of the order of 10^5 up to T ~ 30 K. We discuss the potential performance improvements of microwave cavities built from bulk MgB2 materials produced by reactive liquid Mg infiltration.Comment: 7 pages, 2 embedded figures, accepted for publication in Supercond. Sci. Techno

    Initial geomagnetic field model from MAGSAT

    Get PDF
    Magsat data from magnetically quiet days were used to derive a thirteenth degree and order spherical harmonic geomagnetic field model, MGST(3/80). The model utilized both scalar and vector data and fit that data with standard deviations of 8, 52, 55 and 97 nT for the scalar magnitude, B sub r, B sub theta and B sub phi respectively. When compared with earlier models, the Earth's dipole moment continues to decrease at a rate of about 26 nT/year. Evaluation of earlier models with Magsat data shows that the scalar field at the Magsat epoch is best predicted by the POGO(2/72) model but that the AWC/75 and IGS/75 are better for predicting vector fields

    A Study of Activated Processes in Soft Sphere Glass

    Full text link
    On the basis of long simulations of a binary mixture of soft spheres just below the glass transition, we make an exploratory study of the activated processes that contribute to the dynamics. We concentrate on statistical measures of the size of the activated processes.Comment: 17 pages, 9 postscript figures with epsf, uses harvmac.te

    THE USE OF NEAR INFRARED REFLECTANCE FOR EVALUATING COTTON FINENESS AND MATURITY

    Get PDF
    The U.S. Department of Agriculture has proposed to develop Ii new high speed, high volume technique to assess cotton quality. This goal has led us to investigate the feasibility of near infrared reflectance spectroscopy as a technique for evaluating cotton fiber perimeter size and wall thickness, two of the physical characteristics used in the evaluation of cotton fineness and maturity. In order to isolate the effects of perimeter size and wall thickness, nineteen cotton samples were selected on the basis of their having a nonsignificant correlation between these 2 measurements. The reflectance spectra from 1100 to 2500 nanometers was recorded at every other wavelength. The 700 independent variables were transformed by log (1/ reflectance). Due to the multicollinearity of the independent variables, the principle components were used in a multiple regression with data obtained from the reference method (arealometer) for the two dependent variables, perimeter size and wall thickness. The regression analysis of perimeter size and wall thickness on the principle components gave R2\u27S of 0.229 and 0.943 respectively

    Ergodic sampling of the topological charge using the density of states

    Get PDF
    In lattice calculations, the approach to the continuum limit is hindered by the severe freezing of the topological charge, which prevents ergodic sampling in configuration space. In order to significantly reduce the autocorrelation time of the topological charge, we develop a density of states approach with a smooth constraint and use it to study SU(3) pure Yang Mills gauge theory near the continuum limit. Our algorithm relies on simulated tempering across a range of couplings, which guarantees the decorrelation of the topological charge and ergodic sampling of topological sectors. Particular emphasis is placed on testing the accuracy, efficiency and scaling properties of the method. In their most conservative interpretation, our results provide firm evidence of a sizeable reduction of the exponent z related to the growth of the autocorrelation time as a function of the inverse lattice spacing

    Electrostatics in wind-blown sand

    Full text link
    Wind-blown sand, or "saltation," is an important geological process, and the primary source of atmospheric dust aerosols. Significant discrepancies exist between classical saltation theory and measurements. We show here that these discrepancies can be resolved by the inclusion of sand electrification in a physically based saltation model. Indeed, we find that electric forces enhance the concentration of saltating particles and cause them to travel closer to the surface, in agreement with measurements. Our results thus indicate that sand electrification plays an important role in saltation.Comment: 4 journal pages, 5 figures, and supplementary material. Article is in press at PR
    corecore